Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays

Enhanced photoelectric conversion is demonstrated in a crystalline silicon (c-Si) solar cell with frustum nanorod arrays (FNAs). The omnidirectional antireflection of FNAs is also investigated using an angle-resolved reflectance spectroscopy and simulated by RCWA method.

[1]  Joachim P Spatz,et al.  Biomimetic interfaces for high-performance optics in the deep-UV light range. , 2008, Nano letters.

[2]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[3]  Daniel Poitras,et al.  Toward perfect antireflection coatings. 2. Theory. , 2004, Applied optics.

[4]  Hao-Chung Kuo,et al.  Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns , 2009 .

[5]  Kazuhiro Hane,et al.  100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask , 2001 .

[6]  H. Kuo,et al.  Low refractive index Si nanopillars on Si substrate , 2007 .

[7]  P. Yu,et al.  Self-Assembled Two-Dimensional Surface Structures for Beam Shaping of GaN-Based Vertical-Injection Light-Emitting Diodes , 2010, IEEE Photonics Technology Letters.

[8]  Harish Manohara,et al.  A novel silicon nanotips antireflection surface for the micro Sun sensor. , 2005, Nano letters.

[9]  W. Marsden I and J , 2012 .

[10]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[11]  H. Kuo,et al.  Efficiency Enhancement and Beam Shaping of GaN–InGaN Vertical-Injection Light-Emitting Diodes via High-Aspect-Ratio Nanorod Arrays , 2009, IEEE Photonics Technology Letters.

[12]  W H Southwell,et al.  Gradient-index antireflection coatings. , 1983, Optics letters.

[13]  Peichen Yu,et al.  Broadband and omnidirectional antireflection employing disordered GaN nanopillars. , 2008, Optics express.

[14]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[15]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[16]  P. Yu,et al.  Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures , 2011 .

[17]  W H Southwell,et al.  Antireflection surfaces in silicon using binary optics technology. , 1992, Applied optics.

[18]  Peng Jiang,et al.  Templated fabrication of large area subwavelength antireflection gratings on silicon , 2007 .

[19]  Penghui Ma,et al.  Toward perfect antireflection coatings: numerical investigation. , 2002, Applied optics.

[20]  Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process , 2009 .

[21]  D. Aiken,et al.  High performance anti-reflection coatings for broadband multi-junction solar cells , 2000 .

[22]  Frank Dimroth,et al.  GaAs converters for high power densities of laser illumination , 2008 .

[23]  Peichen Yu,et al.  Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen , 2009 .

[24]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[25]  Philippe M. Fauchet,et al.  Dynamic etching of silicon for broadband antireflection applications , 2002 .