Segmentation and Measurements of Carotid Intima-Media Thickness in Ultrasound Images Using the Improved Convolutional Neural Network and Support Vector Machine

In recent years, diseases of cardiovascular and cerebrovascular have attracted much attention due to main causes in death in human beings. To reduce mortality, there are lots of efforts which are focused on early diagnosis and prevention. It is an important reference index for cardiovascular diseases through the endovascular membrane in carotid artery by medical ultrasound images. The paper proposes a method which finds the region of interest (ROI) by convolutional neural network, segments and measures intima-media membrane mainly using support vector machine (SVM). Essentially, the task of detecting the membrane is one target detection problem. This paper adopts the strategy, named Yon Only Look Once (YOLO), a new detection algorithm, and follows the convolution neural network algorithm based on end-to-end training. Firstly, sufficient samples are extracted according to certain characteristics in the special region. It can be trained by the SVM classification model. Then the ROI is processed and all the pixels are classified into boundary points and non-boundary points through the classification model. Thirdly, the boundary points are selected to obtain the accurate boundary and calculate the intima-media thickness (IMT). In experiments, two hundred ultrasound images are tested, and the results verify that our algorithm is consistent with the results by ground truth (GT). The detection speed of the algorithm in this paper is in real time, and it has high generalization characteristics. The algorithm computes the intima-media thickness in ultrasound images accurately and quickly with 95% consistence to ground truth.