From Starch to Metal/Carbon Hybrid Nanostructures: Hydrothermal Metal‐Catalyzed Carbonization

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[3]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[4]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[5]  Klaus Müllen,et al.  Pyrolysis in the mesophase: a chemist's approach toward preparing carbon nano- and microparticles. , 2002, Journal of the American Chemical Society.

[6]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[7]  Shui-Tong Lee,et al.  Fabrication of Germanium‐Filled Silica Nanotubes and Aligned Silica Nanofibers , 2003 .

[8]  M. Yoshimura,et al.  Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. , 2001, Journal of the American Chemical Society.

[9]  David Dollimore,et al.  A thermal analysis investigation of partially hydrolyzed starch , 1998 .

[10]  Younan Xia,et al.  Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence , 2003 .

[11]  Iijima,et al.  Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon , 1998, Science.

[12]  H. Terrones,et al.  Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles , 1995 .

[13]  D. Dollimore,et al.  The effect of chemical modification on starch studied using thermal analysis , 1998 .

[14]  Xiaoqing Zhang,et al.  Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy , 2002 .

[15]  Stephen Mann,et al.  Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. , 2003, Angewandte Chemie.

[16]  F. Phillipp,et al.  Synthesis and characterization of nanowires and nanocables , 2000 .

[17]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[18]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[19]  C. Guerret-Piecourt,et al.  Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes , 1994, Nature.

[20]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[21]  Takashi Sekiguchi,et al.  Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. , 2003, Journal of the American Chemical Society.

[22]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[23]  Edmund Bäuerlein,et al.  Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. , 2003, Angewandte Chemie.

[24]  Rodney S. Ruoff,et al.  Single Crystal Metals Encapsulated in Carbon Nanoparticles , 1993, Science.

[25]  D. Ugarte,et al.  Nanocapillarity and Chemistry in Carbon Nanotubes , 1996, Science.

[26]  D. Ugarte How to fill or empty a graphitic onion , 1993 .

[27]  Shui-Tong Lee,et al.  Coaxial three-layer nanocables synthesized by combining laser ablation and thermal evaporation , 2000 .

[28]  Qian,et al.  A reduction-pyrolysis-catalysis synthesis of diamond , 1998, Science.

[29]  James C. Withers,et al.  Yttrium carbide in nanotubes , 1993, Nature.