On the complexity of checking semantic equivalences between pushdown processes and finite-state processes

Simulation preorder/equivalence and bisimulation equivalence are the most commonly used equivalences in concurrency theory. Their standard definitions are often called strong simulation/bisimulation, while weak simulation/bisimulation abstracts from internal @t-actions. We study the computational complexity of checking these strong and weak semantic preorders/equivalences between pushdown processes and finite-state processes. We present a complete picture of the computational complexity of these problems and also study fixed-parameter tractability in two important input parameters: x, the size of the finite control of the pushdown process, and y, the size of the finite-state process. All simulation problems are generally EXPTIME-complete and only become polynomial if both parameters x and y are fixed. Weak bisimulation equivalence is PSPACE-complete, but becomes polynomial if and only if parameter x is fixed. Strong bisimulation equivalence is PSPACE-complete, but becomes polynomial if either parameter x or y is fixed.

[1]  Faron Moller,et al.  Infinite Results , 1996, CONCUR.

[2]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[3]  Petr Jancar Undecidability of Bisimilarity for Petri Nets and Some Related Problems , 1995, Theor. Comput. Sci..

[4]  Faron Moller,et al.  Verification on Infinite Structures , 2001, Handbook of Process Algebra.

[5]  Jan A. Bergstra,et al.  Decidability of Bisimulation Equivalence for Processes Generating Context-Free Languages , 1987, PARLE.

[6]  Richard Mayr On the Complexity of Bisimulation Problems for Pushdown Automata , 2000, IFIP TCS.

[7]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[8]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[9]  Jens Knoop,et al.  An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis , 1999, FoSSaCS.

[10]  Colin Stirling,et al.  Decidability of bisimulation equivalence for normed pushdown processes , 1998, SIGA.

[11]  Javier Esparza,et al.  Decidability of model checking for infinite-state concurrent systems , 1997, Acta Informatica.

[12]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[13]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[14]  R. V. Glabbeek The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves , 1993 .

[15]  Wolfgang Thomas,et al.  On the Ehrenfeucht-Fraïssé Game in Theoretical Computer Science , 1993, TAPSOFT.

[16]  Antonín Kucera,et al.  Deciding bisimulation-like equivalences with finite-state processes , 2001, Theor. Comput. Sci..

[17]  Rajeev Alur,et al.  Analysis of recursive state machines , 2001, TOPL.

[18]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[19]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[20]  Jirí Srba,et al.  Roadmap of Infinite Results , 2002, Bull. EATCS.

[21]  Jirí Srba Strong Bisimilarity and Regularity of Basic Process Algebra Is PSPACE-Hard , 2002, ICALP.

[22]  Bernhard Steffen,et al.  Bisimulation Collapse and the Process Taxonomy , 1996, CONCUR.

[23]  Javier Esparza,et al.  A BDD-Based Model Checker for Recursive Programs , 2001, CAV.

[24]  M. W. Shields An Introduction to Automata Theory , 1988 .

[25]  Jirí Srba,et al.  Undecidability of bisimilarity by defender's forcing , 2008, JACM.

[26]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[27]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[28]  Jan Friso Groote,et al.  A Short Proof of the Decidability of Bisimulation for Normed BPA-Processes , 1992, Inf. Process. Lett..

[29]  Richard Mayr Undecidability of Weak Bisimulation Equivalence for 1-Counter Processes , 2003, ICALP.

[30]  Ahmed Bouajjani,et al.  Languages, Rewriting Systems, and Verification of Infinite-State Systems , 2001, ICALP.

[31]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[32]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[33]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[34]  Antonín Kucera,et al.  Weak bisimilarity between finite-state systems and BPA or normed BPP is decidable in polynomial time , 2002, Theor. Comput. Sci..

[35]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[36]  Søren Christensen,et al.  Bisimulation Equivalence is Decidable for all Context-Free Processes , 2022 .

[37]  Faron Moller,et al.  Techniques for Decidability and Undecidability of Bisimilarity , 1999, CONCUR.

[38]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[39]  Antonín Kucera,et al.  Simulation Preorder on Simple Process Algebras , 1999, ICALP.

[40]  Géraud Sénizergues,et al.  Decidability of bisimulation equivalence for equational graphs of finite out-degree , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[41]  Igor Walukiewicz Model Checking CTL Properties of Pushdown Systems , 2000, FSTTCS.

[42]  Bernhard Steffen,et al.  An Elementary Bisimulation Decision Procedure for Arbitrary Context-Free Processes , 1995, MFCS.

[43]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[44]  Jirí Srba,et al.  Undecidability of Weak Bisimilarity for Pushdown Processes , 2002, CONCUR.

[45]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[46]  Antonín Kucera,et al.  Why Is Simulation Harder than Bisimulation? , 2002, CONCUR.

[47]  Colin Stirling,et al.  The Joys of Bisimulation , 1998, MFCS.

[48]  Antonín Kucera,et al.  Equivalence-checking on infinite-state systems: Techniques and results , 2002, Theory and Practice of Logic Programming.

[49]  Javier Esparza,et al.  Model-Checking LTL with Regular Valuations for Pushdown Systems , 2001, TACS.

[50]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[51]  Richard Mayr,et al.  Weak Bisimilarity and Regularity of Context-Free Processes is EXPTIME-hard , 2004, EXPRESS.

[52]  Jirí Srba,et al.  Strong Bisimilarity and Regularity of Basic Parallel Processes Is PSPACE-Hard , 2002, STACS.

[53]  Jan A. Bergstra,et al.  Decidability of bisimulation equivalence for process generating context-free languages , 1987, JACM.

[54]  Hans Hüttel,et al.  Actions Speak Louder Than Words: Proving Bisimilarity for Context-Free Processes , 1998, J. Log. Comput..

[55]  Antonín Kucera,et al.  Simulation Preorder over Simple Process Algebras , 2002, Inf. Comput..

[56]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[57]  Emily P. Friedman The Inclusion Problem for Simple Languages , 1976, Theor. Comput. Sci..

[58]  Antonín Kucera,et al.  On Simulation-Checking with Sequential Systems , 2000, ASIAN.

[59]  Stephan Merz,et al.  Model Checking , 2000 .

[60]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[61]  Faron Moller,et al.  A Polynomial Algorithm for Deciding Bisimilarity of Normed Context-Free Processes , 1994, Theor. Comput. Sci..

[62]  Antonín Kucera,et al.  Weak Bisimilarity with Infinite-State Systems Can Be Decided in Polynomial Time , 1999, CONCUR.

[63]  Antonín Kucera,et al.  On the Complexity of Semantic Equivalences for Pushdown Automata and BPA , 2002, MFCS.

[64]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.