A three‐dimensional model describing stress‐temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications

Between composite materials, shape memory alloy (SMA) composites are having a more and more relevant role. Typically, SMA wires are embedded in a metallic or a polymeric matrix to obtain materials with native multi-functionality and adaptive properties. This work approaches the computational study of the mechanical response of a composite in which SMA wires, previously deformed, are activated by electrical current heating, and accordingly try to recover the original shape inducing a shape change or a prestress in the structure. In particular, since the SMA behaviour is strongly affected by the thermo-mechanical coupling, in the first part of this work we present a 3D phenomenological model able to take into account this aspect. The model time-discrete counterpart is used to develop a 3D solid finite element able to describe the thermo-electro-mechanical coupled problem due to shape memory alloy response and to Joule effect. Finally, in the second part of the paper, we employ the developed computational tool to simulate different feasible SMA composite applications. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  J. Ro,et al.  NITINOL-reinforced plates: Part II. Static and buckling characteristics☆ , 1995 .

[2]  Ron Barrett,et al.  Super-active shape-memory alloy composites , 1996 .

[3]  Daniel J. Inman,et al.  Smart Materials, Structures, and Mathematical Issues for Active Damage Control , 1997 .

[4]  Yasubumi Furuya,et al.  Design and Material Evaluation of Shape Memory Composites , 1996 .

[5]  Martine Wevers,et al.  Impact damage behaviour of shape memory alloy composites , 2003 .

[6]  Perry H Leo,et al.  Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires , 1993 .

[7]  S. Seelecke,et al.  A finite element formulation for SMA actuators , 2000 .

[8]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[9]  O. Hayden Griffin,et al.  Finite Element Predictions of Active Buckling Control of Stiffened Panels , 1993 .

[10]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[11]  Jan-Anders E. Manson,et al.  Active modification of the vibration frequencies of a polymer beam using shape memory alloy fibres , 1996, Other Conferences.

[12]  Yan Li,et al.  Partial transformation behavior of prestrained TiNi fibers in composites , 2001 .

[13]  A. Venkatesh Active vibration control of flexible linkage mechanisms using shape memory alloy fiber-reinforced composites , 1992, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  J. Ro,et al.  NITINOL-reinforced plates: Part III. Dynamic characteristics , 1995 .

[15]  O. Maisonneuve,et al.  Energy balance of thermoelastic martensite transformation under stress , 1996 .

[16]  D. Lagoudas,et al.  Modeling of thin layer extensional thermoelectric SMA actuators , 1998 .

[17]  Craig A. Rogers,et al.  The Response of SMA Hybrid Composite Materials to Low Velocity Impact , 1994 .

[18]  J. Shaw Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy , 2000 .

[19]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[20]  S. Miyazaki,et al.  Shape memory materials and hybrid composites for smart systems: Part II Shape-memory hybrid composites , 1998 .

[21]  Christian Licht,et al.  Thermomechanical couplings and pseudoelasticity of shape memory alloys , 1998 .

[22]  Lorenza Petrini,et al.  Improvements and algorithmical considerations on a recent three‐dimensional model describing stress‐induced solid phase transformations , 2002 .

[23]  A. V. Srinivasan,et al.  Multiplexing Embedded Nitinol Actuators to Obtain Increased Bandwidth in Structural Control , 1997 .

[24]  Z. Wei,et al.  Shape-memory materials and hybrid composites for smart systems Part I Shape-memory materials , 2022 .

[25]  J. Ro,et al.  Shape control of NITINOL-reinforced composite beams☆ , 2000 .

[26]  Arup K. Maji,et al.  Smart Prestressing with Shape-Memory Alloy , 1998 .

[27]  Dimitris C. Lagoudas,et al.  Actuation of elastomeric rods with embedded two-way shape memory alloy actuators , 1998 .

[28]  L. Ye,et al.  Thermo-mechanical behaviour of shape memory alloy reinforced composite laminate (Ni-Ti/glass-fibre/epoxy) , 1999 .

[29]  F. Auricchio,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: solution algorithm and boundary value problems , 2004 .

[30]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[31]  Christian Lexcellent,et al.  Experimental Study and Modeling of a TiNi Shape Memory Alloy Wire Actuator , 1997 .

[32]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[33]  G. Guenin,et al.  Use of shape memory alloys in actuators , 1996, Other Conferences.

[34]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[35]  Marc E. Regelbrugge,et al.  Evaluation of a Constitutive Model for Shape Memory Alloys Embedded in Shell Structures , 1996 .

[36]  Jan-Anders E. Månson,et al.  Modelling of the martensitic transformation in shape memory alloy composites , 1994 .

[37]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[38]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[39]  Q. Chen,et al.  Vibration analysis and control of flexible beam by using smart damping structures , 1999 .

[40]  D. Vokoun,et al.  Study of the effect of curing treatment in fabrication of SMA/polymer composites on deformational behavior of NiTi-5at.%Cu SMA wires , 2003 .

[41]  Jeanette J. Epps,et al.  Shape memory alloy actuation for active tuning of composite beams , 1997 .

[42]  L. Schetky Shape-memory alloys , 1979 .

[43]  J. A. Balta,et al.  Adaptive composites with embedded shape memory alloy wires , 1998 .

[44]  Mohsen Shahinpoor,et al.  Design, prototyping and computer simulations of a novel large bending actuator made with a shape memory alloy contractile wire , 1997 .

[45]  Charles H. Beauchamp,et al.  Shape memory alloy adjustable camber (SMAAC) control surfaces , 1992, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[46]  Victor Birman,et al.  Global Strength of Hybrid Shape Memory Composite Plates Subjected to Low-Velocity Impact , 1997 .

[47]  Dominiek Reynaerts,et al.  Design aspects of shape memory actuators , 1998 .

[48]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[49]  Jacob Aboudi,et al.  The response of shape memory alloy composites , 1997 .

[50]  Xiaoming Tao,et al.  Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires , 2002 .

[51]  W. Ostachowicz,et al.  Natural frequencies of a multilayer composite plate with shape memory alloy wires , 1999 .

[52]  Craig A. Rogers,et al.  Design of Shape Memory Alloy Actuators , 1992 .

[53]  Gangbing Song,et al.  Active position control of a shape-memory-alloy-wire-actuated composite beam , 1999, Smart Structures.