Joint Program on the Science and Policy of Global Change Estimated PDFs of Climate System Properties Including Natural and Anthropogenic Forcings

[1] We present revised probability density functions (PDF) for climate system properties (climate sensitivity, rate of deep-ocean heat uptake, and the net aerosol forcing strength) that include the effect on 20th century temperature changes of natural as well as anthropogenic forcings. The additional natural forcings, primarily the cooling by volcanic eruptions, affect the PDF by requiring a higher climate sensitivity and a lower rate of deep-ocean heat uptake to reproduce the observed temperature changes. The estimated 90% range of climate sensitivity is 2.1 to 8.9 K. The net aerosol forcing strength for the 1980s shifted toward positive values to compensate for the volcanic forcing with 90% bounds of −0.74 to −0.14 W/m2. The rate of deep-ocean heat uptake is reduced with the effective diffusivity, Kv, ranging from 0.05 to 4.1 cm2/s. This upper bound implies that many AOGCMs mix heat into the deep ocean (below the mixed layer) too efficiently.

[1]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[2]  Michael E. Schlesinger,et al.  Objective estimation of the probability density function for climate sensitivity , 2001 .

[3]  Peter H. Stone,et al.  Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture , 1990 .

[4]  B. Santer,et al.  Penetration of Human-Induced Warming into the World's Oceans , 2005, Science.

[5]  Andrei P. Sokolov,et al.  Comparing Oceanic Heat Uptake in AOGCM Transient Climate Change Experiments , 2003 .

[6]  Andrei P. Sokolov,et al.  A flexible climate model for use in integrated assessments , 1998 .

[7]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[8]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[9]  S. Levitus,et al.  Warming of the World Ocean , 2000 .

[10]  Yuhang Wang,et al.  Anthropogenic forcing on tropospheric ozone and OH since preindustrial times , 1998 .

[11]  Sergey Paltsev,et al.  MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation , 2005 .

[12]  A. Keen,et al.  Influence of natural variability and the cold start problem on the simulated transient response to increasing CO2 , 1997 .

[13]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[14]  F. Joos,et al.  Probabilistic climate change projections using neural networks , 2003 .

[15]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[16]  T. Wigley,et al.  Natural variability of the climate system and detection of the greenhouse effect , 1990, Nature.

[17]  M. Collins,et al.  Projections of future climate change , 2002 .

[18]  Jonathan M. Gregory,et al.  Simulated and observed decadal variability in ocean heat content , 2004 .

[19]  T. Barnett,et al.  Detection of Anthropogenic Climate Change in the World's Oceans , 2001, Science.

[20]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[21]  Shan Sun,et al.  Climate Simulations for 1951-2050 with a Coupled Atmosphere-Ocean Model , 2003 .

[22]  Andrei P. Sokolov,et al.  Joint Program on the Science and Policy of Global Change Constraining Climate Model Properties Using Optimal Fingerprint Detection Methods , 2000 .

[23]  S. Raper,et al.  An Observationally Based Estimate of the Climate Sensitivity , 2002 .

[24]  M. Sarofim,et al.  Uncertainty Analysis of Climate Change and Policy Response , 2003 .

[25]  Francis W. Zwiers,et al.  Detection of climate change and attribution of causes , 2001 .

[26]  Francis W. Zwiers,et al.  Detecting and attributing external influences on the climate system: a review of recent advances , 2005 .

[27]  David M. H. Sexton,et al.  A new global gridded radiosonde temperature data base and recent temperature trends , 1997 .

[28]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[29]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[30]  Robert Joseph Andres,et al.  Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results , 2004 .

[31]  Henry D. Jacoby,et al.  Annex I differentiation proposals : implications for welfare, equity and policy , 1997 .

[32]  Andrei P. Sokolov,et al.  The deep-ocean heat uptake in transient climate change , 2002 .

[33]  Timothy P. Boyer,et al.  Warming of the world ocean, 1955–2003 , 2005 .

[34]  Larry W. Thomason,et al.  Climate forcings in Goddard Institute for Space Studies SI2000 simulations , 2002 .

[35]  M. R. Allen,et al.  Checking for model consistency in optimal fingerprinting , 1999 .

[36]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[37]  S. Zatman On Steady Rate Coupling Between an Elastic Upper Crust and a Viscous Interior , 2000 .

[38]  Peter H. Stone,et al.  Development of a two-dimensional zonally averaged statistical-dynamical model. II - The role of eddy momentum fluxes in the general circulation and their parameterization , 1987 .

[39]  J. Dignon,et al.  Global Emissions of Nitrogen and Sulfur Oxides in Fossil Fuel Combustion 1970–1986 , 1992 .

[40]  R. Schnur,et al.  Global ocean warming tied to anthropogenic forcing , 2002 .