Curvilinear virtual elements for contact mechanics

Abstract The virtual element method (VEM) for curved edges with applications to contact mechanics is outlined within this work. VEM allows the use of non-matching meshes at interfaces with the advantage that these can be mapped to a simple node-to-node contact formulation. To account for exact approximation of complex geometries at interfaces, we developed a VEM technology for contact that considers curved edges. A number of numerical examples illustrate the robustness and accuracy of this discretization technique. The results are very promising and underline the advantages of the new VEM formulation for contact between two elastic bodies in the presence of curved interfaces.

[1]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[2]  Tod A. Laursen,et al.  Mortar contact formulations for deformable–deformable contact: Past contributions and new extensions for enriched and embedded interface formulations , 2012 .

[3]  B. Reddy,et al.  A virtual element method for transversely isotropic elasticity , 2018, Computational Mechanics.

[4]  Peter Wriggers,et al.  A computational framework for brittle crack-propagation based on efficient virtual element method , 2019, Finite Elements in Analysis and Design.

[5]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[6]  Peter Wriggers,et al.  Efficient virtual element formulations for compressible and incompressible finite deformations , 2017 .

[7]  Glaucio H. Paulino,et al.  Topology optimization using polytopes , 2013, 1312.7016.

[8]  P. Wriggers,et al.  Virtual Element Formulation For Finite Strain Elastodynamics , 2020, Computer Modeling in Engineering & Sciences.

[9]  E. Artioli,et al.  Asymptotic homogenization of fibre-reinforced composites: a virtual element method approach , 2018 .

[10]  E. Artioli,et al.  Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem , 2017, Computational Mechanics.

[11]  Peter Wriggers,et al.  Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .

[12]  Alvise Sommariva,et al.  Gauss-Green cubature and moment computation over arbitrary geometries , 2009, J. Comput. Appl. Math..

[13]  Glaucio H. Paulino,et al.  Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .

[14]  Alessandro Russo,et al.  Polynomial preserving virtual elements with curved edges , 2020 .

[15]  Edoardo Artioli,et al.  VEM-based tracking algorithm for cohesive/frictional 2D fracture , 2020 .

[16]  E. Artioli,et al.  Algebraic cubature on polygonal elements with a circular edge , 2020, Comput. Math. Appl..

[17]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[18]  Heng Chi,et al.  On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration , 2019, Computer Methods in Applied Mechanics and Engineering.

[19]  Petr Krysl,et al.  Mean‐strain eight‐node hexahedron with stabilization by energy sampling , 2015 .

[20]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[21]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[22]  M. Verani,et al.  An adaptive curved virtual element method for the statistical homogenization of random fibre-reinforced composites , 2020 .

[23]  Peter Wriggers,et al.  VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE , 2019, International Journal for Multiscale Computational Engineering.

[24]  Fadi Aldakheel,et al.  A microscale model for concrete failure in poro-elasto-plastic media , 2020, Theoretical and Applied Fracture Mechanics.

[25]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[26]  P. Wriggers,et al.  A virtual element method for frictional contact including large deformations , 2019, Engineering Computations.

[27]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[28]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[29]  Petr Krysl,et al.  Mean-strain 8-node hexahedron with optimized energy-sampling stabilization , 2016 .

[30]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[31]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[32]  Peter Wriggers,et al.  An adaptive global─local approach for phase-field modeling of anisotropic brittle fracture , 2020 .

[33]  R. Krause,et al.  Monotone methods on non-matching grids for non-linear contact problems , 2003 .

[34]  Kyoungsoo Park,et al.  Numerical recipes for elastodynamic virtual element methods with explicit time integration , 2019, International Journal for Numerical Methods in Engineering.

[35]  Wolfgang A. Wall,et al.  A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .

[36]  P. Wriggers,et al.  Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers , 2018 .

[37]  S. de Miranda,et al.  A stress/displacement Virtual Element method for plane elasticity problems , 2017, 1702.01702.

[38]  Jakub Lengiewicz,et al.  Automation of finite element formulations for large deformation contact problems , 2010 .

[39]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[40]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[41]  Peter Wriggers,et al.  A global-local approach for hydraulic phase-field fracture in poroelastic media , 2020, Comput. Math. Appl..

[42]  L. Beirao da Veiga,et al.  The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[43]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[44]  Peter Wriggers,et al.  A low order 3D virtual element formulation for finite elasto–plastic deformations , 2018, Computational Mechanics.

[45]  L. Beirao da Veiga,et al.  Curvilinear Virtual Elements for 2D solid mechanics applications , 2019, ArXiv.

[46]  P. Wriggers,et al.  A virtual element formulation for general element shapes , 2020, Computational Mechanics.

[47]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[48]  P. Wriggers,et al.  Virtual elements for finite thermo-plasticity problems , 2019, Computational Mechanics.

[49]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[50]  Peter Wriggers,et al.  Phase-field modeling of brittle fracture using an efficient virtual element scheme , 2018, Computer Methods in Applied Mechanics and Engineering.

[51]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[52]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .