Nonlinear filtering methods for harmonic retrieval and model order selection in Gaussian and non-Gaussian noise

This paper addresses the problem of high-resolution parameter estimation (harmonic retrieval) and model-order selection for superimposed sinusoids. The harmonic retrieval problem is analyzed using a nonlinear parameter estimation approach. Estimation is performed using several nonlinear estimators with signals embedded in white and colored Gaussian noise. Simulation results demonstrate that the nonlinear filters perform close to the Cramer-Rao bound. Model order selection is performed in Gaussian and non-Gaussian noise. The problem is formulated using a multiple hypothesis testing approach with assumed known a priori probabilities for each hypothesis. Parameter estimation is performed using the extended Kalman filter when the noise is Gaussian. The extended high-order filter (EHOF) is implemented in non-Gaussian noise. Simulation results demonstrate excellent performance in selecting the correct model order and estimating the signal parameters.

[1]  Jerry M. Mendel,et al.  Cumulant-based approach to the harmonic retrieval problem , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[2]  Stelios C. A. Thomopoulos,et al.  High Order Filters for Estimation in Non-Gaussian Noise , 1993, 1993 American Control Conference.

[3]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[4]  Randolph L. Moses,et al.  A modified TLS-Prony method using data decimation , 1994, IEEE Trans. Signal Process..

[5]  Jae S. Lim,et al.  Advanced topics in signal processing , 1987 .

[6]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[9]  T. W. Hilands High Order Nonlinear Estimation with Signal Processing Applications , 1993 .

[10]  Benjamin Friedlander A recursive maximum likelihood algorithm for ARMA spectral estimation , 1982, IEEE Trans. Inf. Theory.

[11]  David F. Liang,et al.  Exact and Approximate State Estimation Techniques for Nonlinear Dynamic Systems , 1983 .

[12]  Srdjan S. Stankovic,et al.  Estimation of frequencies of sinusoids using the extended Kalman filter , 1984, ICASSP.

[13]  C. Vaidyanathan,et al.  Estimating the number of sinusoids in non-Gaussian noise using cumulants , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[14]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  H. Akaike A new look at the statistical model identification , 1974 .

[16]  Sun-Yuan Kung,et al.  A Toeplitz approximation approach to coherent source direction finding , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  W. Denham,et al.  Sequential estimation when measurement function nonlinearity is comparable to measurement error. , 1966 .

[18]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[19]  David Middleton,et al.  Simultaneous signal detection and estimation under multiple hypotheses , 1972, IEEE Trans. Inf. Theory.

[20]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[21]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[22]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[23]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[24]  D. F. Liang,et al.  New estimation algorithms for discrete non-linear systems and observations with multiple time delays , 1976 .

[25]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[26]  Chrysostomos L. Nikias,et al.  Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[27]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[28]  C. K. Yuen,et al.  Digital spectral analysis , 1979 .

[29]  B. Baygun,et al.  An order selection criterion via simultaneous estimation/detection theory , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.