Nonlinear filtering methods for harmonic retrieval and model order selection in Gaussian and non-Gaussian noise
暂无分享,去创建一个
[1] Jerry M. Mendel,et al. Cumulant-based approach to the harmonic retrieval problem , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[2] Stelios C. A. Thomopoulos,et al. High Order Filters for Estimation in Non-Gaussian Noise , 1993, 1993 American Control Conference.
[3] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[4] Randolph L. Moses,et al. A modified TLS-Prony method using data decimation , 1994, IEEE Trans. Signal Process..
[5] Jae S. Lim,et al. Advanced topics in signal processing , 1987 .
[6] Thomas Kailath,et al. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[7] Jean-Jacques Fuchs,et al. Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..
[8] Kai-Bor Yu,et al. Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..
[9] T. W. Hilands. High Order Nonlinear Estimation with Signal Processing Applications , 1993 .
[10] Benjamin Friedlander. A recursive maximum likelihood algorithm for ARMA spectral estimation , 1982, IEEE Trans. Inf. Theory.
[11] David F. Liang,et al. Exact and Approximate State Estimation Techniques for Nonlinear Dynamic Systems , 1983 .
[12] Srdjan S. Stankovic,et al. Estimation of frequencies of sinusoids using the extended Kalman filter , 1984, ICASSP.
[13] C. Vaidyanathan,et al. Estimating the number of sinusoids in non-Gaussian noise using cumulants , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[14] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[15] H. Akaike. A new look at the statistical model identification , 1974 .
[16] Sun-Yuan Kung,et al. A Toeplitz approximation approach to coherent source direction finding , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[17] W. Denham,et al. Sequential estimation when measurement function nonlinearity is comparable to measurement error. , 1966 .
[18] S.M. Kay,et al. Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.
[19] David Middleton,et al. Simultaneous signal detection and estimation under multiple hypotheses , 1972, IEEE Trans. Inf. Theory.
[20] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[21] Ralph Otto Schmidt,et al. A signal subspace approach to multiple emitter location and spectral estimation , 1981 .
[22] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[23] D. Lainiotis. Optimal adaptive estimation: Structure and parameter adaption , 1971 .
[24] D. F. Liang,et al. New estimation algorithms for discrete non-linear systems and observations with multiple time delays , 1976 .
[25] J. Capon. High-resolution frequency-wavenumber spectrum analysis , 1969 .
[26] Chrysostomos L. Nikias,et al. Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..
[27] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[28] C. K. Yuen,et al. Digital spectral analysis , 1979 .
[29] B. Baygun,et al. An order selection criterion via simultaneous estimation/detection theory , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.