Plateau de Bure High-z Blue Sequence Survey 2 (PHIBSS2): Search for Secondary Sources, CO Luminosity Functions in the Field, and the Evolution of Molecular Gas Density through Cosmic Time

We report on the results of a search for serendipitous sources in CO emission in 110 cubes targeting CO(2 − 1), CO(3 − 2), and CO(6 − 5) at z ∼ 1–2 from the second Plateau de Bure High-z Blue Sequence Survey (PHIBSS2). The PHIBSS2 observations were part of a 4 yr legacy program at the IRAM Plateau de Bure Interferometer aimed at studying early galaxy evolution from the perspective of molecular gas reservoirs. We present a catalog of 67 candidate secondary sources from this search, with 45 of the 110 data cubes showing sources in addition to the primary target that appear to be field detections, unrelated to the central sources. This catalog includes redshifts, line widths, and fluxes, as well as an estimation of their reliability based on their false-positive probability. We perform a search in the 3D Hubble Space Telescope/CANDELS catalogs for the secondary CO detections and tentatively find that ∼64% of these have optical counterparts, which we use to constrain their redshifts. Finally, we use our catalog of candidate CO detections to derive the CO(2 − 1), CO(3 − 2), CO(4 − 3), CO(5 − 4), and CO(6 − 5) luminosity functions over a range of redshifts, as well as the molecular gas mass density evolution. Despite the different methodology, these results are in very good agreement with previous observational constraints derived from blind searches in deep fields. They provide an example of the type of “deep-field” science that can be carried out with targeted observations.

[1]  P. P. van der Werf,et al.  The Atacama Large Millimeter/submillimeter Array Spectroscopic Survey in the Hubble Ultra Deep Field: CO Emission Lines and 3 mm Continuum Sources , 2019, The Astrophysical Journal.

[2]  A. M. Swinbank,et al.  The ALMA Spectroscopic Survey in the HUDF: CO Luminosity Functions and the Molecular Gas Content of Galaxies through Cosmic History , 2019, The Astrophysical Journal.

[3]  A. M. Swinbank,et al.  The ALMA Spectroscopic Survey in the HUDF: CO emission lines and 3 mm continuum sources , 2019, 1903.09161.

[4]  Annalisa Pillepich,et al.  The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM , 2019, The Astrophysical Journal.

[5]  B. Weiner,et al.  PHIBSS2: survey design and z = 0.5 – 0.8 results , 2018, Astronomy & Astrophysics.

[6]  Edinburgh,et al.  COLDz: Shape of the CO Luminosity Function at High Redshift and the Cold Gas History of the Universe , 2018, The Astrophysical Journal.

[7]  E. Murphy,et al.  Science with a next-generation Very Large Array , 2019 .

[8]  F. Walter,et al.  The CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array , 2018, The Astrophysical Journal.

[9]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[10]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[11]  C. Casey,et al.  The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5 , 2017, 1710.06872.

[12]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[13]  Berkeley,et al.  PHIBSS: exploring the dependence of the CO–H2 conversion factor on total mass surface density at z<1.5 , 2016, 1611.04587.

[14]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS , 2016, 1607.06770.

[15]  David Elbaz,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SURVEY DESCRIPTION , 2016, 1607.06768.

[16]  R. Somerville,et al.  Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6 , 2016, 1602.02761.

[17]  G. Zamorani,et al.  CO luminosity function from Herschel-selected galaxies and the contribution of AGN , 2015, 1511.00974.

[18]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[19]  S. Warren,et al.  HIGH-RESOLUTION IMAGING OF PHIBSS z ∼ 2 MAIN-SEQUENCE GALAXIES IN CO J = 1 → 0 , 2015, 1507.05652.

[20]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[21]  D. Elbaz,et al.  CO excitation of normal star forming galaxies out to $z=1.5$ as regulated by the properties of their interstellar medium , 2014, 1409.8158.

[22]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[23]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[24]  R. Somerville,et al.  The nature of the ISM in galaxies during the star-formation activity peak of the Universe , 2013, 1310.1476.

[25]  R. Somerville,et al.  Evolution of the atomic and molecular gas content of galaxies , 2013, 1308.6764.

[26]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[27]  H. Rix,et al.  A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH: CONSTRAINTS ON THE CO LUMINOSITY FUNCTION AND THE COSMIC H2 DENSITY , 2014 .

[28]  H. Rix,et al.  A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH , 2013, 1312.6364.

[29]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[30]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[31]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[32]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[33]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[34]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[35]  Oxford,et al.  Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon dominated regions , 2012, 1204.0795.

[36]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[37]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[38]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[39]  S. Driver,et al.  Quantifying cosmic variance , 2010, 1005.2538.

[40]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[41]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[42]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[43]  S. Rawlings,et al.  A HEURISTIC PREDICTION OF THE COSMIC EVOLUTION OF THE CO-LUMINOSITY FUNCTIONS , 2009, 0907.3091.

[44]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[45]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[46]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[47]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[48]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[49]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[50]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[51]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[52]  David Burstein,et al.  Rotation velocities of 16 SA galaxies and a comparison of Sa, SB and SC rotation properties. , 1985 .

[53]  James E. Gunn,et al.  The dynamics of rich clusters of galaxies. I. The Coma cluster. , 1982 .

[54]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .