Super Restricted Edge Connectivity of Regular Graphs

An edge cut of a connected graph is called restricted if it separates this graph into components each having order at least 2; a graph G is super restricted edge connected if G−S contains an isolated edge for every minimum restricted edge cut S of G. It is proved in this paper that k-regular connected graph G is super restricted edge connected if k > |V(G)|/2+1. The lower bound on k is exemplified to be sharp to some extent. With this observation, we determined the number of edge cuts of size at most 2k−2 of these graphs.