Anticipating Synchronization and State Predictor for Nonlinear Systems

This chapter discusses a synchronization problem, anticipating synchronization, and its application in control design for nonlinear systems with delays. The anticipating synchronization phenomena was initially reported by Voss (2000), and Oguchi and Nijmeijer (2005) then generalized it from the framework of control theory. This chapter revisits the anticipating synchronization problem and introduces a state predictor based on synchronization. Furthermore, we discuss recent progress on predictor design for nonlinear systems with delays.

[1]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[2]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[3]  Q. Han New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control , 2007 .

[4]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  O. J. M. Smith,et al.  A controller to overcome dead time , 1959 .

[6]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.

[7]  Henk Nijmeijer,et al.  Anticipating synchronization of chaotic Lur'e systems. , 2007, Chaos.

[8]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[9]  Shengyuan Xu,et al.  Improved delay-dependent stability criteria for time-delay systems , 2005, IEEE Transactions on Automatic Control.

[10]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[11]  E. M. Shahverdiev,et al.  Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[12]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[13]  Toshiki Oguchi Finite Spectrum Assignment for Nonlinear Time-Delay Systems , 2016 .

[14]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[15]  M. Krstić Delay Compensation for Nonlinear, Adaptive, and PDE Systems , 2009 .

[16]  Henk Nijmeijer,et al.  Prediction of chaotic behavior , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Toshiki Oguchi A finite spectrum assignment for retarded non-linear systems and its solvability condition , 2007, Int. J. Control.

[18]  Henk Nijmeijer,et al.  Erratum: “Anticipating synchronization of chaotic Lur’e systems” [Chaos 17, 013117 (2007)] , 2008 .

[19]  Henk Nijmeijer,et al.  Predictor-based consensus control of a multi-agent system with time-delays , 2015, 2015 IEEE Conference on Control Applications (CCA).

[20]  D. V. Senthilkumar,et al.  Dynamics of Nonlinear Time-Delay Systems , 2011 .

[21]  Costas Kravaris,et al.  Deadtime compensation for nonlinear processes , 1989 .

[22]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[23]  César Cruz-Hernández,et al.  Synchronization of Time-Delay Chua's Oscillator with Application to Secure Communication , 2004 .