Fault diagnosis of chemical processes considering fault frequency via Bayesian network

[1]  Jialin Liu,et al.  Process Monitoring Using Bayesian Classification on PCA Subspace , 2004 .

[2]  James J. Chen,et al.  Class-imbalanced classifiers for high-dimensional data , 2013, Briefings Bioinform..

[3]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[4]  V. Sugumaran,et al.  Exploiting sound signals for fault diagnosis of bearings using decision tree , 2013 .

[5]  Moisès Graells,et al.  Fault diagnosis of chemical processes with incomplete observations: A comparative study , 2016, Comput. Chem. Eng..

[6]  Moisès Graells,et al.  A semi-supervised approach to fault diagnosis for chemical processes , 2010, Comput. Chem. Eng..

[7]  Sami Othman,et al.  Support vector machines combined to observers for fault diagnosis in chemical reactors , 2014 .

[8]  Chi Ma,et al.  Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS , 2011 .

[9]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[10]  Qian Yu,et al.  An expert system for real-time fault diagnosis of complex chemical processes , 2003, Expert Syst. Appl..

[11]  S. Qin,et al.  Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models , 2008 .

[12]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[13]  Xinmin Zhang,et al.  Variable moving windows based non‐Gaussian dissimilarity analysis technique for batch processes fault detection and diagnosis , 2015 .

[14]  Yudi Samyudia,et al.  Novel PCA-Based Technique for Identification of Dominant Variables for Partial Control , 2010 .

[15]  Furong Gao,et al.  Review of Recent Research on Data-Based Process Monitoring , 2013 .

[16]  Jie Yu A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes , 2012 .

[17]  Xiaoqiang Zhao,et al.  Output-relevant fault detection and identification of chemical process based on hybrid kernel T-PLS , 2014 .

[18]  Nikolaos M. Avouris,et al.  EVALUATION OF CLASSIFIERS FOR AN UNEVEN CLASS DISTRIBUTION PROBLEM , 2006, Appl. Artif. Intell..

[19]  Lionel Estel,et al.  Bayesian Network Method for Fault Diagnosis in a Continuous Tubular Reactor , 2010 .

[20]  S. Joe Qin,et al.  Fault Detection of Nonlinear Processes Using Multiway Kernel Independent Component Analysis , 2007 .

[21]  Luis Puigjaner,et al.  Simultaneous fault diagnosis in chemical plants using a multilabel approach , 2007 .

[22]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[23]  N. Lawrence Ricker,et al.  Decentralized control of the Tennessee Eastman Challenge Process , 1996 .

[24]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling: Kurowicka/Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[25]  Janos Gertler,et al.  Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis , 2000 .

[26]  Mudassir M. Rashid,et al.  Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection , 2012 .

[27]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[28]  Ali Cinar,et al.  Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods , 2012, Comput. Chem. Eng..

[29]  Jing Li,et al.  Fault detection and isolation of faults in a multivariate process with Bayesian network , 2010 .

[30]  Kris Villez,et al.  Performance evaluation of fault detection methods for wastewater treatment processes , 2011, Biotechnology and bioengineering.

[31]  Philip M. Dixon,et al.  IMPROVING THE PRECISION OF ESTIMATES OF THE FREQUENCY OF RARE EVENTS , 2005 .

[32]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[33]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[34]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  J. J. Chen,et al.  Classification ensembles for unbalanced class sizes in predictive toxicology , 2005, SAR and QSAR in environmental research.

[36]  Zhiqiang Ge,et al.  Two-dimensional Bayesian monitoring method for nonlinear multimode processes , 2011 .