Resources for Interpreting Variants in Precision Genomic Oncology Applications

Precision genomic oncology–applying high throughput sequencing (HTS) at the point-of-care to inform clinical decisions–is a developing precision medicine paradigm that is seeing increasing adoption. Simultaneously, new developments in targeted agents and immunotherapy, when informed by rich genomic characterization offer potential benefit to a growing subset of patients. Multiple previous studies have commented on methods for identifying both germline and somatic variants. However, interpreting individual variants remains a significant challenge, relying in large part on the integration of observed variants with biological knowledge. A number of data and software resources have been developed to assist in interpreting observed variants, determining their potential clinical actionability, and augmenting them with ancillary information that can inform clinical decisions and even generate new hypotheses for exploration in the laboratory. Here, we review available variant catalogs, variant and functional annotation software and tools, and databases of clinically actionable variants that can be used in an ad hoc approach with research samples or incorporated into a data platform for interpreting and formally reporting clinical results.

[1]  Marilyn M. Li Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer , 2019 .

[2]  Alok V. Joglekar,et al.  Personalized T cell-mediated cancer immunotherapy: progress and challenges. , 2017, Current opinion in biotechnology.

[3]  Ludmila V. Danilova,et al.  Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade , 2017, Science.

[4]  K. Garber In a major shift, cancer drugs go 'tissue-agnostic'. , 2017, Science.

[5]  Michael P. Schroeder,et al.  Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations , 2017, Genome Medicine.

[6]  Moriah H Nissan,et al.  OncoKB: A Precision Oncology Knowledge Base. , 2017, JCO precision oncology.

[7]  Lilia M. Iakoucheva,et al.  MutPred2: inferring the molecular and phenotypic impact of amino acid variants , 2017, bioRxiv.

[8]  Trevor J Pugh,et al.  Data resources for the identification and interpretation of actionable mutations by clinicians , 2017, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  Levi Garraway,et al.  Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden , 2017, Genome Medicine.

[10]  E. Jaffee,et al.  Targeting neoantigens to augment antitumour immunity , 2017, Nature Reviews Cancer.

[11]  Gavin R. Oliver,et al.  Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery , 2017, Oncotarget.

[12]  Howard L. McLeod,et al.  Key Lessons Learned from Moffitt's Molecular Tumor Board: The Clinical Genomics Action Committee Experience. , 2017, The oncologist.

[13]  Steven J. M. Jones,et al.  CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer , 2017, Nature Genetics.

[14]  Carrie Cibulskis,et al.  Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study , 2017, Genetics in Medicine.

[15]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[16]  Marcin Imielinski,et al.  The cancer precision medicine knowledge base for structured clinical-grade mutations and interpretations , 2016, J. Am. Medical Informatics Assoc..

[17]  Marilyn M. Li,et al.  Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. , 2017, The Journal of molecular diagnostics : JMD.

[18]  Helen Y Wang,et al.  Immune targets and neoantigens for cancer immunotherapy and precision medicine , 2016, Cell Research.

[19]  Robert Gray,et al.  NCI-Molecular Analysis for Therapy Choice (NCI-MATCH) trial: A novel public-private partnership , 2016 .

[20]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[21]  Obi L. Griffith,et al.  CIViC: A knowledgebase for expert-crowdsourcing the clinical interpretation of variants in cancer , 2016, bioRxiv.

[22]  Richard Simon,et al.  Genomic AlterationDriven Clinical Trial Designs in Oncology , 2016, Annals of Internal Medicine.

[23]  Marcin Imielinski,et al.  The Precision Medicine Knowledge Base: an online application for collaborative editing, maintenance and sharing of structured clinical-grade cancer mutations interpretations , 2016, bioRxiv.

[24]  Raymond Dalgleish,et al.  HGVS Recommendations for the Description of Sequence Variants: 2016 Update , 2016, Human mutation.

[25]  Benjamin S. Glicksberg,et al.  Development and clinical application of an integrative genomic approach to personalized cancer therapy , 2016, Genome Medicine.

[26]  Deanna M. Church,et al.  A variant by any name: quantifying annotation discordance across tools and clinical databases , 2016, Genome Medicine.

[27]  Obi L. Griffith,et al.  High-performance web services for querying gene and variant annotation , 2016, Genome Biology.

[28]  Jonathan R. Dry,et al.  Defining actionable mutations for oncology therapeutic development , 2016, Nature Reviews Cancer.

[29]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[30]  Brent S. Pedersen,et al.  Vcfanno: fast, flexible annotation of genetic variants , 2016, Genome Biology.

[31]  E. Boerwinkle,et al.  dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.

[32]  M. Rubin,et al.  Generating a neoantigen map of advanced urothelial carcinoma by whole exome sequencing. , 2016 .

[33]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[34]  Deng Pan,et al.  DGIdb 2.0: mining clinically relevant drug–gene interactions , 2015, Nucleic Acids Res..

[35]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[36]  R. Pazdur,et al.  Next-Generation Sequencing in Oncology in the Era of Precision Medicine. , 2016, JAMA oncology.

[37]  A. Gonzalez-Perez,et al.  Abstract A1-45: In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals novel targeting opportunities , 2015 .

[38]  Steven J. M. Jones,et al.  The Molecular Taxonomy of Primary Prostate Cancer , 2015, Cell.

[39]  William E. Evans,et al.  Pharmacogenomics in the clinic , 2015, Nature.

[40]  Hui Yang,et al.  Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR , 2015, Nature Protocols.

[41]  Eliot Y. Zhu,et al.  Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations. , 2015, The Journal of molecular diagnostics : JMD.

[42]  A. Gonzalez-Perez,et al.  Abstract 2983: In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals novel targeting opportunities , 2015 .

[43]  Vladimir Vacic,et al.  Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. , 2015, JAMA oncology.

[44]  Gonçalo R. Abecasis,et al.  Unified representation of genetic variants , 2015, Bioinform..

[45]  B. Rost,et al.  Better prediction of functional effects for sequence variants , 2015, BMC Genomics.

[46]  Gary W Procop,et al.  Prospective Clinical Study of Precision Oncology in Solid Tumors. , 2015, Journal of the National Cancer Institute.

[47]  Donavan T. Cheng,et al.  Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. , 2015, The Journal of molecular diagnostics : JMD.

[48]  Trevor J Pugh,et al.  Oncotator: Cancer Variant Annotation Tool , 2015, Human mutation.

[49]  Udayan Guha,et al.  Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker-derived, multiarm, multihistology phase II basket trial. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  KanakaDurga Addepalli Models Predicting Effects of Missense Mutations in Oncogenesis , 2014 .

[51]  R. Tiu,et al.  Practical management of patients with chronic myeloid leukemia who develop tyrosine kinase inhibitor-resistant BCR-ABL1 mutations , 2014, Therapeutic advances in hematology.

[52]  A. Yenamandra,et al.  Detection of Genomic Imbalances Involved in Common Chromosomal Rearrangements of Acute Leukemia by Cytogenomic SNP Microarray Analysis , 2014 .

[53]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[54]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[55]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[56]  G. Mills,et al.  CanDrA: Cancer-Specific Driver Missense Mutation Annotation with Optimized Features , 2013, PloS one.

[57]  Joshua F. McMichael,et al.  DGIdb - Mining the druggable genome , 2013, Nature Methods.

[58]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[59]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[60]  Michael Thomas,et al.  Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. , 2013, The New England journal of medicine.

[61]  Levi A Garraway,et al.  Genomics-driven oncology: framework for an emerging paradigm. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  Bernd Hauck,et al.  Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. , 2013, The New England journal of medicine.

[63]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[64]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[65]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[66]  M. Eileen Dolan,et al.  Cancer pharmacogenomics: strategies and challenges , 2012, Nature Reviews Genetics.

[67]  K. Flaherty,et al.  Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. , 2012, The New England journal of medicine.

[68]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[69]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[70]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[71]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[72]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[73]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[74]  Fiona Cunningham,et al.  A Combined Functional Annotation Score for Non-Synonymous Variants , 2012, Human Heredity.

[75]  Syed Haider,et al.  International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data , 2011, Database J. Biol. Databases Curation.

[76]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[77]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[78]  A. Gonzalez-Perez,et al.  Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. , 2011, American journal of human genetics.

[79]  T. Mughal,et al.  Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase , 2010, Biologics : targets & therapy.

[80]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[81]  Majid Masso,et al.  AUTO-MUTE: web-based tools for predicting stability changes in proteins due to single amino acid replacements. , 2010, Protein engineering, design & selection : PEDS.

[82]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[83]  A. Gemma,et al.  F1000 highlights , 2010 .

[84]  Robert B. Hartlage,et al.  This PDF file includes: Materials and Methods , 2009 .

[85]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[86]  Leyla Isik,et al.  Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. , 2009, Cancer research.

[87]  E. Capriotti,et al.  Functional annotations improve the predictive score of human disease‐related mutations in proteins , 2009, Human mutation.

[88]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[89]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[90]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[91]  Valentin A. Ilyin,et al.  Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways , 2007, Nucleic Acids Res..

[92]  R. Larson,et al.  Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic myelogenous leukemia in chronic phase (CML-CP): The 5-year update from the IRIS study. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[93]  Peng Yue,et al.  SNPs3D: Candidate gene and SNP selection for association studies , 2006, BMC Bioinformatics.

[94]  G. Church,et al.  The Personal Genome Project , 2005, Molecular systems biology.

[95]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[96]  Mi Zhou,et al.  nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms , 2005, Nucleic Acids Res..

[97]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[98]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[99]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[100]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..