Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies

The effect of a transparent conductive oxide (TCO) buffer layer on the insulator matrix and on the resistive switching process in the metal/TiO2/TCO/metal assembly was studied depending on the material of the TCO (ITO(In2O3)0.9(SnO2)0.1 or SnO2 or ZnO). For the first time electro-physical studies and near edge x-ray absorption fine structure (NEXAFS) studies were carried out jointly and at the same point of the sample, providing direct experimental evidence that the switching process strongly influences the lowest unoccupied bands and the local atomic structure of the TiO2 layers. It was established that a TCO layer in a metal/TiO2/TCO/metal assembly is an additional source of oxygen vacancies for the TiO2 film. The RL (RH) states are achieved presumably with the formation (rupture) of the electrically conductive path of oxygen vacancies. Inserting an Al2O3 thin layer between the TiO2 and TCO layers to some extent restricts the processes of migration of the oxygen ions and vacancies, and does not allow the anti-clockwise bipolar resistive switching in a Au/ TiO2/Al2O3/ITO/Au assembly. The greatest value of the ratio RH/RL is observed for the assembly with a SnO2 buffer layer that will provide the maximum set of

[1]  M. Gorgoi,et al.  X-ray spectroscopic study of SrTiOx films with different interlayers , 2013 .

[2]  Anthony J. Kenyon,et al.  Resistive switching in silicon sub-oxide films , 2012 .

[3]  L. Goux,et al.  On the Gradual Unipolar and Bipolar Resistive Switching of TiN\ HfO2\Pt Memory Systems , 2010 .

[4]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[5]  de Groot FM,et al.  Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations. , 1993, Physical review. B, Condensed matter.

[6]  J. Aarik,et al.  Ti 2p and O 1s X-ray absorption of TiO2 polymorphs , 1997 .

[7]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[8]  K. Kinoshita,et al.  Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model , 2007 .

[9]  K. Boahen Neuromorphic Microchips. , 2005, Scientific American.

[10]  F. Yubero,et al.  Angle dependence of the O K edge absorption spectra of TiO2 thin films with preferential texture , 2003 .

[11]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[12]  D. Ielmini,et al.  Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[13]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[14]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[15]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[16]  W. Göpel,et al.  Intrinsic defects of Ti O 2 (110): Interaction with chemisorbed O 2 , H 2 , CO, and C O 2 , 1983 .

[17]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[18]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[19]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[20]  D. W. Fischer,et al.  X-Ray Band Spectra and Molecular-Orbital Structure of Rutile TiO 2 , 1972 .

[21]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[22]  D. Ielmini,et al.  Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories , 2011, Nanotechnology.

[23]  Guoqiang Li,et al.  Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells , 2011 .

[24]  W. Braun,et al.  Atomic ordering in TiO2 thin films studied by X‐ray reflection spectroscopy , 2009 .

[25]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[26]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[27]  Jonathan A. Cooper,et al.  Spectral Distribution of Atomic Oscillator Strengths , 1968 .

[28]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[29]  R. Waser Bulk Conductivity and Defect Chemistry of Acceptor‐Doped Strontium Titanate in the Quenched State , 1991 .

[30]  N. Kosugi,et al.  Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity , 1989 .

[31]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[33]  Jeong Hwan Kim,et al.  Resistive Switching in $\hbox{TiO}_{2}$ Thin Films Using the Semiconducting In-Ga-Zn-O Electrode , 2012, IEEE Electron Device Letters.

[34]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[35]  L. Goux,et al.  Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers , 2010 .

[36]  G. González Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques , 2012, Materials.

[37]  G. Steinle‐Neumann,et al.  The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases , 2007 .

[38]  M. Gorgoi,et al.  X-ray and photoelectron spectroscopic nondestructive methods for thin films and interfaces study. Application to SrTiO3 based heterostuctures , 2013 .

[39]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[40]  Shang Da-Shang,et al.  Resistance switching in oxides with inhomogeneous conductivity , 2013, 1304.3290.

[41]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[42]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[43]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[44]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[45]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[46]  Rainer Waser,et al.  Impact of the Counter‐Electrode Material on Redox Processes in Resistive Switching Memories , 2014 .

[47]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.