Effects of Mg-ion and Ca-ion implantations on P. gingivalis and F. nucleatum adhesion

[1]  M. Sela,et al.  The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. , 2013, Clinical oral implants research.

[2]  A. Wennerberg,et al.  Importance of Ca(2+) modifications for osseointegration of smooth and moderately rough anodized titanium implants - a removal torque and histological evaluation in rabbit. , 2012, Clinical implant dentistry and related research.

[3]  Kyung-Ho Ko,et al.  Gene expression in Ca or Mg implanted titanium surfaces , 2012, Tissue Engineering and Regenerative Medicine.

[4]  L. Cho,et al.  The effects of Mg-ion implantation and sandblasting on Porphyromonas gingivalis attachment. , 2012, Clinical oral implants research.

[5]  Jin-Woo Park,et al.  Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. , 2010, Clinical oral implants research.

[6]  Chan-Jin Park,et al.  Bone response of Mg ion-implanted clinical implants with the plasma source ion implantation method. , 2010, Clinical oral implants research.

[7]  E. Ivanova,et al.  Bacterial Extracellular Polysaccharides Involved in Biofilm Formation , 2009, Molecules.

[8]  H. C. van der Mei,et al.  Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[9]  L. Williams,et al.  A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center , 2009, Nucleic acids research.

[10]  H. C. van der Mei,et al.  Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. , 2009, Journal of colloid and interface science.

[11]  A. Wennerberg,et al.  Increased bone contact to a calcium-incorporated oxidized commercially pure titanium implant: an in-vivo study in rabbits. , 2008, International journal of oral and maxillofacial surgery.

[12]  P. Fuentealba,et al.  Theoretical study of the surface reactivity of alkaline earth oxides: local density of states evaluation of the local softness. , 2008, The Journal of chemical physics.

[13]  Y. Wan,et al.  Effect of Mg ion implantation on calcium phosphate formation on titanium , 2006 .

[14]  J. Chorover,et al.  ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  A. Kiejna,et al.  The energetics and structure of rutile TiO2(110) , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Y. L. Jeyachandran,et al.  The effect of surface composition of titanium films on bacterial adhesion , 2006, Biomedical materials.

[17]  F. H. Jones,et al.  Effects of calcium ion implantation on human bone cell interaction with titanium. , 2005, Biomaterials.

[18]  Y. Konttinen,et al.  Attachment of oral gram-negative anaerobic rods to a smooth titanium surface: an electron microscopy study. , 2004, The International journal of oral & maxillofacial implants.

[19]  J. Weng,et al.  Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. , 2004, Biomaterials.

[20]  Y. Sul,et al.  Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. , 2004, Clinical implant dentistry and related research.

[21]  C. Pederzolli,et al.  Role of chemical interactions in bacterial adhesion to polymer surfaces. , 2004, Biomaterials.

[22]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[23]  H. C. van der Mei,et al.  Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. , 2001, Biomaterials.

[24]  A. V. van Winkelhoff,et al.  Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients. , 2000, Clinical oral implants research.

[25]  M. Yoshinari,et al.  Influence of surface modifications to titanium on oral bacterial adhesion in vitro. , 2000, Journal of biomedical materials research.

[26]  T. Hanawa,et al.  Three-dimensional bone response to commercially pure titanium, hydroxyapatite, and calcium-ion-mixing titanium in rabbits. , 2000, The International journal of oral & maxillofacial implants.

[27]  Malte Hermansson,et al.  The DLVO theory in microbial adhesion , 1999 .

[28]  Y. An,et al.  Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. , 1998, Journal of biomedical materials research.

[29]  P. A. Raj,et al.  Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin , 1996, Infection and immunity.

[30]  U. Lekholm,et al.  A longitudinal microbiological study on osseointegrated titanium implants in partially edentulous patients. , 1993, Clinical oral implants research.

[31]  M. Quirynen,et al.  An in vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of Supra- and Subgingival Plaque , 1993, Journal of dental research.

[32]  P. Kolenbrander,et al.  Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.

[33]  S. Holt,et al.  Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22 , 1993, Journal of bacteriology.

[34]  J. Lindhe,et al.  Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. , 1992, Clinical oral implants research.

[35]  J. Feijen,et al.  Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. , 1985, Journal of general microbiology.

[36]  P. Rutter,et al.  The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces. , 1983, Journal of general microbiology.

[37]  Declan Corcoran Peri implantitis. , 2010, Journal of the Irish Dental Association.

[38]  Investigaciones Científicas,et al.  SYNTHETIC HYDROXYAPATITE AS A SURFACE MODEL OF DENTAL ENAMEL AND DENTINE , 2009 .

[39]  J. Keller,et al.  Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study. , 1995, The Journal of oral implantology.

[40]  Wu-Yuan Cd,et al.  Oral bacterial attachment to titanium surfaces: a scanning electron microscopy study. , 1995 .

[41]  N. Lang,et al.  Proceedings of the 1st European workshop on periodontology , 1994 .

[42]  T. Albrektsson,et al.  Consensus report of session IV , 1985 .

[43]  Waters Mgj Inflammation associated with implants with different surface types , 2022 .