The Synthesis of SiO 2 @AuAg@CeO 2 Sandwich Structures with Enhanced Catalytic Performance Towards CO Oxidation

[1]  Dianzeng Jia,et al.  Optimum Balance of Cu+ and Oxygen Vacancies of CuO x -CeO2 Composites for CO Oxidation Based on Thermal Treatment , 2019, European Journal of Inorganic Chemistry.

[2]  Y. Bando,et al.  Gold-Loaded Nanoporous Iron Oxide Cubes Derived from Prussian Blue as Carbon Monoxide Oxidation Catalyst at Room Temperature , 2018, ChemistrySelect.

[3]  Qingwen Zhang,et al.  The Template-Free Synthesis of CuO@CeO2 Nanospheres: Facile Strategy, Structure Optimization, and Enhanced Catalytic Activity toward CO Oxidation , 2018, European Journal of Inorganic Chemistry.

[4]  Zhicheng Tang,et al.  Outstanding Water‐Resistance Pd‐Co Nanoparticles Functionalized Mesoporous Carbon Catalyst for CO Catalytic Oxidation at Room Temperature , 2018, ChemistrySelect.

[5]  Q. Song,et al.  Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties. , 2017, Journal of hazardous materials.

[6]  L. Rossi,et al.  Temperature‐Driven Restructuring of Silver on AuAg Porous Nanotubes: Impact on CO Oxidation , 2017 .

[7]  K. Hareesh,et al.  Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol , 2016 .

[8]  S. Sciré,et al.  H2 purification through preferential oxidation of CO over ceria supported bimetallic Au-based catalysts , 2016 .

[9]  Chongli Zhong,et al.  The Effect of N-Containing Support on Catalytic Activity of CO Oxidation over Highly Dispersed Pt/UiO-67 , 2016 .

[10]  Ashutosh Sharma,et al.  Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process , 2016 .

[11]  Xi Chen,et al.  Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation. , 2016, ACS applied materials & interfaces.

[12]  P. Ghosal,et al.  Mn Ion substituted CeO2 Nano spheres for Low Temperature CO Oxidation: The Promoting Effect of Mn Ions , 2016 .

[13]  M. Couillard,et al.  Quantifying metal support interaction in ceria-supported Pt, PtSn and Ru nanoparticles using electrochemical technique , 2016 .

[14]  S. Sciré,et al.  Au–Ag/CeO2 and Au–Cu/CeO2 Catalysts for Volatile Organic Compounds Oxidation and CO Preferential Oxidation , 2015, Catalysis Letters.

[15]  Yanzhao Yang,et al.  Designed synthesis and formation mechanism of CeO2 hollow nanospheres and their facile functionalization with Au nanoparticles , 2015 .

[16]  Yanzhao Yang,et al.  Enhanced Catalytic Performance of (CuO)x /Ce0.9 Cu0.1 O2 Nanospheres: Combined Contribution of the Synergistic Effect and Surface Defects. , 2015, ChemPlusChem.

[17]  G. Korotcenkov,et al.  What restricts gold clusters reactivity in catalysis and gas sensing effects: A focused review , 2015 .

[18]  Zhiquan Jiang,et al.  Size-Dependent Reaction Pathways of Low-Temperature CO Oxidation on Au/CeO2 Catalysts , 2015 .

[19]  Xueqing Wu,et al.  Synergistic effect of double-shelled and sandwiched TiO₂@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. , 2015, ACS applied materials & interfaces.

[20]  A. Beck,et al.  Bimetallic Au–Ag/SiO2 catalysts: comparison in glucose, benzyl alcohol and CO oxidation reactions , 2015, Reaction Kinetics, Mechanisms and Catalysis.

[21]  Zhihua Wang,et al.  CO oxidation on Au@CeO2 yolk–shell nanoparticles with high catalytic stability , 2014 .

[22]  A. Patra,et al.  Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles. , 2014, ACS applied materials & interfaces.

[23]  Y. Liu,et al.  Catalytic performance of AuIII supported on SiO2 modified activated carbon , 2014 .

[24]  P. Sangeetha,et al.  Bimetallic Au–Ag/CeO2 Catalysts for Preferential Oxidation of CO in Hydrogen-Rich Stream: Effect of Calcination Temperature , 2014 .

[25]  Hongyang Liu,et al.  Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. , 2014, ACS nano.

[26]  Jianlin Shi,et al.  Fabrication of Hierarchically Porous RuO2–CuO/Al–ZrO2 Composite as Highly Efficient Catalyst for Ammonia-Selective Catalytic Oxidation , 2014 .

[27]  K. Koyasu,et al.  Nonscalable oxidation catalysis of gold clusters. , 2014, Accounts of chemical research.

[28]  M. G. Burke,et al.  Correlating catalytic activity of Ag-Au nanoparticles with 3D compositional variations. , 2014, Nano letters.

[29]  Lirong Zheng,et al.  Morphologic effects of nano CeO2–TiO2 on the performance of Au/CeO2–TiO2 catalysts in low-temperature CO oxidation , 2014 .

[30]  Tao Zhang,et al.  Understanding the synergistic effects of gold bimetallic catalysts , 2013 .

[31]  W. Chu,et al.  Bimetallic Au–Cu supported on ceria for PROX reaction: Effects of Cu/Au atomic ratios and thermal pretreatments , 2013 .

[32]  H. Yamashita,et al.  Efficient degradation of CO and acetaldehyde using nano-sized Pt catalysts supported on CeO2 and CeO2/ZSM-5 composite , 2013 .

[33]  Changyan Li,et al.  Three-dimensionally ordered macroporous Au/CeO2–Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases , 2012 .

[34]  György Sáfrán,et al.  Silica-supported au nanoparticles decorated by CeO2: Formation, morphology, and CO oxidation activity , 2011 .

[35]  Sangobtip Pongstabodee,et al.  Preferential CO oxidation in H2-rich stream over Au/CeO2 catalysts prepared via modified deposition–precipitation , 2011 .

[36]  S. Musić,et al.  Precipitation of amorphous SiO2 particles and their properties , 2011 .

[37]  塔娜,et al.  Influence of Au particle size on AuCeO2 catalysts for CO oxidation , 2011 .

[38]  Aiqin Wang,et al.  CO Oxidation Catalyzed by Au−Ag Bimetallic Nanoparticles Supported in Mesoporous Silica , 2009 .

[39]  Shanshan Lv,et al.  Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation , 2009 .

[40]  D. Su,et al.  Synthesis of Thermally Stable and Highly Active Bimetallic Au−Ag Nanoparticles on Inert Supports , 2009 .

[41]  Yue Liu,et al.  Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature , 2008 .

[42]  C. Cheng,et al.  CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. , 2008, The Journal of chemical physics.

[43]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[44]  Aiqin Wang,et al.  Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support , 2006 .

[45]  Aiqin Wang,et al.  Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. , 2005, The journal of physical chemistry. B.

[46]  G. Kästle,et al.  Oxidation-Resistant Gold-55 Clusters , 2002, Science.

[47]  Dong-Hwang Chen,et al.  Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions , 2002 .

[48]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .