Generation of waves in Boussinesq models using a source function method
暂无分享,去创建一个
Ge Wei | James T. Kirby | G. Wei | J. Kirby | Amar Sinha | A. Sinha
[1] Hajime Mase,et al. Hybrid frequency-domain KdV equa-tion for random wave transformation , 1992 .
[2] D. Peregrine. Long waves on a beach , 1967, Journal of Fluid Mechanics.
[3] Robert A. Dalrymple,et al. Verification of a parabolic equation for propagation of weakly-nonlinear waves , 1984 .
[4] S. Orszag,et al. Approximation of radiation boundary conditions , 1981 .
[5] F. Bampi,et al. Gravity waves in water of variable depth , 1978 .
[6] J. Larsen,et al. Open boundaries in short wave simulations — A new approach , 1983 .
[7] G. Wei,et al. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.
[8] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[9] G. Wei,et al. Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .
[10] James T. Kirby,et al. Nonlinear, Dispersive Long Waves in Water of Variable Depth. , 1996 .
[11] A. C. Radder,et al. Verification of numerical wave propagation models for simple harmonic linear water waves , 1982 .
[12] G. Wei,et al. Simulation of Water Waves by Boussinesq Models , 1998 .
[13] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .