Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity

We present a parameterization of the Stillinger-Weber potential to describe the interatomic interactions within single-layer MoS2 (SLMoS2). The potential parameters are fitted to an experimentally obtained phonon spectrum, and the resulting empirical potential provides a good description for the energy gap and the crossover in the phonon spectrum. Using this potential, we perform classical molecular dynamics simulations to study chirality, size, and strain effects on the Young's modulus and the thermal conductivity of SLMoS2. We demonstrate the importance of the free edges on the mechanical and thermal properties of SLMoS2 nanoribbons. Specifically, while edge effects are found to reduce the Young's modulus of SLMoS2 nanoribbons, the free edges also reduce the thermal stability of SLMoS2 nanoribbons, which may induce melting well below the bulk melt temperature. Finally, uniaxial strain is found to efficiently manipulate the thermal conductivity of infinite, periodic SLMoS2.

[1]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[2]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[3]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[4]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[5]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[6]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[7]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[8]  Ning Wei,et al.  Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility , 2011, Nanotechnology.

[9]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[10]  Harold S. Park,et al.  The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators. , 2009, Nano letters.

[11]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[12]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[13]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[14]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[15]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[16]  N. Aluru,et al.  Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. , 2009, Nano letters.

[17]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[18]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[19]  Satyaprakash Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013 .

[20]  T. Liang,et al.  Parametrization of a reactive many-body potential for Mo-S systems , 2009 .

[21]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[22]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[23]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[24]  Jin-Wu Jiang,et al.  Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators , 2011, 1111.4535.

[25]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[26]  James A. Stewart,et al.  Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2) , 2013 .

[27]  T. Rahman,et al.  Single layer MoS 2 on the Cu(111) surface: First-principles electronic structure calculations , 2012 .

[28]  J. Kysar,et al.  Publisher's Note: Nonlinear elastic behavior of two-dimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)] , 2013 .

[29]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[30]  V. Varshney,et al.  MD Simulations of Molybdenum Disulphide (MoS2): Force-Field Parameterization and Thermal Transport Behavior , 2010 .

[31]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[32]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[33]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[34]  Gerbrand Ceder,et al.  Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems , 2013 .

[35]  E. D. Crozier,et al.  A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy , 1987 .

[36]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[37]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[38]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  V. Shenoy,et al.  Edge-stress-induced warping of graphene sheets and nanoribbons. , 2008, Physical review letters.

[40]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[41]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[42]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[43]  V. Shenoy,et al.  Edge elastic properties of defect-free single-layer graphene sheets , 2009 .

[44]  E. Akturk,et al.  Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects , 2010, 1009.5488.

[45]  Branimir Radisavljevic,et al.  Small-signal amplifier based on single-layer MoS2 , 2012 .

[46]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[47]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[48]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[49]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[50]  Jian-Sheng Wang,et al.  Thermal conductance of graphene and dimerite , 2009, 0902.1836.

[51]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[52]  M. Remškar,et al.  Phonons in MoS2 and WS2 Nanotubes , 2008 .

[53]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[54]  Gengchiau Liang,et al.  Thermoelectric performance of MX2 (M = Mo,W; X = S,Se) monolayers , 2013 .

[55]  Jian-Sheng Wang,et al.  A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes , 2010, 1012.1081.

[56]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[57]  A. H. Castro Neto,et al.  Strain engineering of graphene's electronic structure. , 2009, Physical review letters.

[58]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[59]  A. Govindaraj,et al.  Graphene: the new two-dimensional nanomaterial. , 2009, Angewandte Chemie.

[60]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[61]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[62]  Baowen Li,et al.  Edge states induce boundary temperature jump in molecular dynamics simulation of heat conduction , 2009, 0906.1869.

[63]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[64]  T. Rabczuk,et al.  Orientation Dependent Thermal Conductance in Single-Layer MoS2 , 2013, Scientific Reports.

[65]  Kun Chang,et al.  Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries , 2011 .

[66]  T. Ikeshoji,et al.  Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface , 1994 .