Similarities between meta-heuristics algorithms and the science of life

In this paper, we show the functional similarities between Meta-heuristics and the aspects of the science of life (biology): (a) Meta-heuristics based on gene transfer: Genetic algorithms (natural evolution of genes in an organic population), Transgenic Algorithm (transfers of genetic material to another cell that is not descending); (b) Meta-heuristics based on interactions among individual insects: Ant Colony Optimization (on interactions among individuals insects, Ant Colonies), Firefly algorithm (fireflies of the family Lampyridze), Marriage in honey bees Optimization algorithm (the process of reproduction of Honey Bees), Artificial Bee Colony algorithm (the process of recollection of Honey Bees); and (c) Meta-heuristics based on biological aspects of alive beings: Tabu Search Algorithm (Classical Conditioning on alive beings), Simulated Annealing algorithm (temperature control of spiders), Particle Swarm Optimization algorithm (social behavior and movement dynamics of birds and fish) and Artificial Immune System (immunological mechanism of the vertebrates).

[1]  P. Raven,et al.  ORIGIN OF EUKARYOTIC CELLS , 1971 .

[2]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[3]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[4]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of neurosciences.

[5]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[8]  Luca Maria Gambardella,et al.  Solving symmetric and asymmetric TSPs by ant colonies , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  W. N. Hess,et al.  NOTES ON THE BIOLOGY OF SOME COMMON LAMPYRIDÆ , 1920 .

[10]  Craig A. Tovey,et al.  On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers , 2004, Adapt. Behav..

[11]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[12]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[13]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[14]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[15]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[16]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[17]  Lynn Margulis On the Origin of Mitosing Cells , 1967 .

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[20]  Ocotlán Díaz-Parra,et al.  Evolutionary Algorithms with Intelligent Mutation Operator that Solve the Vehicle Routing Problem of Clustered Classification with Time Windows , 2008 .

[21]  Joshua Lederberg,et al.  NOVEL GENOTYPES IN MIXED CULTURES OF BIOCHEMICAL MUTANTS OF BACTERIA , 1946 .

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[24]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[25]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[26]  Weixiong Zhang,et al.  The Asymmetric Traveling Salesman Problem: Algorithms, Instance Generators, and Tests , 2001, ALENEX.

[27]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[28]  M. Meselson,et al.  Massive Horizontal Gene Transfer in Bdelloid Rotifers , 2008, Science.

[29]  Jun Zhang,et al.  A novel discrete particle swarm optimization to solve traveling salesman problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[30]  Corporate Ieee,et al.  1996 IEEE International Conference on Evolutionary Computation Proceedings , 1996 .

[31]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[32]  H. Robbins A Stochastic Approximation Method , 1951 .

[33]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[34]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.

[35]  S. Wright Evolution and the Genetics of Populations, Volume 3: Experimental Results and Evolutionary Deductions , 1977 .

[36]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[37]  Vincenzo Cutello,et al.  Clonal Selection Algorithms: A Comparative Case Study Using Effective Mutation Potentials , 2005, ICARIS.

[38]  I. Pavlov Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex , 1929 .

[39]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[40]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[41]  Fred Glover,et al.  Tabu Search: A Tutorial , 1990 .

[42]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[43]  Bruce B. Collette,et al.  The Diversity of Fishes , 1997 .

[44]  M. Deem,et al.  Phase diagrams of quasispecies theory with recombination and horizontal gene transfer. , 2006, Physical review letters.

[45]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[46]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[47]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[48]  Sewall Wright,et al.  Experimental results and evolutionary deductions , 1977 .

[49]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[50]  K. F. Chen,et al.  Observation of the Decay B0J , 2007 .

[51]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[52]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[53]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..