Multiparty simultaneous quantum identity authentication with secret sharing

Two multiparty simultaneous quantum identity authentication (MSQIA) protocols based on secret sharing are presented. All the users can be authenticated by a trusted third party (TTP) simultaneously. In the first protocol, the TTP shares a random key K with all the users using quantum secret sharing. The ith share acts as the authentication key of the ith user. When it is necessary to perform MSQIA, the TTP generates a random number R secretly and sends a sequence of single photons encoded with K and R to all the users. According to his share, each user performs the corresponding unitary operations on the single photon sequence sequentially. At last, the TTP can judge whether the impersonator exists. The second protocol is a modified version with a circular structure. The two protocols can be efficiently used for MSQIA in a network. They are feasible with current technology.

[1]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[2]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[3]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[4]  Zhou Ping,et al.  Quantum Secure Direct Communication Network with Two-Step Protocol , 2006 .

[5]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[6]  Guisheng Yin,et al.  Quantum Secret Sharing Based on Entanglement without Local Unitary Operations , 2009, 2009 Second International Workshop on Knowledge Discovery and Data Mining.

[7]  Tzonelih Hwang,et al.  Comment on 'Quantum secret sharing between multiparty and multiparty without entanglement' , 2006 .

[8]  M. Curty,et al.  Quantum authentication of classical messages , 2001, quant-ph/0103122.

[9]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[10]  Jian Wang,et al.  Quantum secure direct communication based on order rearrangement of single photons , 2006, quant-ph/0603100.

[11]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[12]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[13]  Fuguo Deng,et al.  Bidirectional quantum secret sharing and secret splitting with polarized single photons , 2005, quant-ph/0504119.

[14]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[15]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[16]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[17]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[18]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[19]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[20]  Takashi Mihara,et al.  Quantum identification schemes with entanglements , 2002 .

[21]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[22]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[23]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[24]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[25]  Guihua Zeng,et al.  Cross-center quantum identification scheme based on teleportation and entanglement swapping , 2005 .

[26]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[27]  M. Bourennane,et al.  Authority-based user authentication in quantum key distribution , 2000 .

[28]  Ping Zhou,et al.  Deterministic secure quantum communication without maximally entangled states , 2006 .

[29]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[30]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[31]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[32]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[33]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[34]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[35]  Tang Chao-jing,et al.  Multiparty Simultaneous Quantum Identity Authentication Based on Entanglement Swapping , 2006 .

[36]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[37]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[38]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .