An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes
暂无分享,去创建一个
[1] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[2] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[3] H. Blum,et al. An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .
[4] Anthony T. Patera,et al. Domain Decomposition by the Mortar Element Method , 1993 .
[5] Pierre Ladevèze,et al. ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .
[6] S. Ohnimus,et al. Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems , 1999 .
[7] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[8] Patrice Coorevits,et al. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..
[9] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[10] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[11] J.-P. Pelle,et al. A posteriori error estimation for unilateral contact with matching and non-matching meshes , 2000 .
[12] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[13] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems , 1999 .
[14] J. T. Oden,et al. A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .
[15] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[16] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[17] Serge Nicaise,et al. A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.
[18] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[19] Peter Wriggers,et al. Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..
[20] Yanqiu Wang,et al. Preconditioning for the mixed formulation of linear plane elasticity , 2005 .
[21] Barbara Wohlmuth. A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .
[22] Patrick Hild,et al. Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .
[23] Ralf Kornhuber,et al. Adaptive finite element methods for variational inequalities , 1993 .
[24] Frédéric Hecht,et al. Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..
[25] Erwin Stein,et al. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .
[26] Barbara I. Wohlmuth,et al. An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..
[27] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[28] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[29] Wenbin Liu,et al. A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..
[30] Franz-Theo Suttmeier,et al. On a direct approach to adaptive FE-discretisations for elliptic variational inequalities , 2005, J. Num. Math..
[31] Faker Ben Belgacem,et al. Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..
[32] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[33] Weimin Han,et al. A posteriori error analysis for finite element solutions of a frictional contact problem , 2006 .
[34] Dietrich Braess,et al. A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.
[35] I. Babuska,et al. The finite element method and its reliability , 2001 .
[36] D. W. Kelly,et al. Procedures for residual equilibration and local error estimation in the finite element method , 1989 .
[37] Maurizio Falcone,et al. Numerical methods for viscosity solutions and applications , 2006 .
[38] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[39] Faker Ben Belgacem,et al. Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..
[40] Peter Wriggers,et al. Different a posteriori error estimators and indicators for contact problems , 1998 .
[41] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[42] Mohammed Hjiaj,et al. A Posteriori Error Control of Finite Element Approximations for Coulomb's Frictional Contact , 2001, SIAM J. Sci. Comput..
[43] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[44] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[45] R. Glowinski,et al. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1990 .
[46] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[47] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[48] Carsten Carstensen,et al. Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.
[49] Andreas Veeser. On a posteriori error estimation for constant obstacle problems , 2001 .
[50] J. H. Bramble,et al. A second order finite difference analog of the first biharmonic boundary value problem , 1966 .
[51] Weimin Han,et al. A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind , 2005 .
[52] F. Ben. NUMERICAL SIMULATION OF SOME VARIATIONAL INEQUALITIES ARISEN FROM UNILATERAL CONTACT PROBLEMS BY THE FINITE ELEMENT METHODS , 2000 .
[53] Weimin Han,et al. A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .
[54] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[55] Ricardo H. Nochetto,et al. Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..
[56] Marc Garbey,et al. Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .
[57] Patrick Hild,et al. Quadratic finite element methods for unilateral contact problems , 2002 .
[58] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[59] H. Rentz-Reichert,et al. UG – A flexible software toolbox for solving partial differential equations , 1997 .