Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia

[1]  Haitao Niu,et al.  Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment , 2022, Cell Communication and Signaling.

[2]  Mengya Zhong,et al.  Chidamide and apatinib are therapeutically synergistic in acute myeloid leukemia stem and progenitor cells , 2022, Experimental Hematology & Oncology.

[3]  M. Cascante,et al.  Inhibition of the succinyl dehydrogenase complex in acute myeloid leukemia leads to a lactate-fuelled respiratory metabolic vulnerability , 2022, Nature communications.

[4]  Lan Wang,et al.  The Role of Glutamine and Glutaminase in Pulmonary Hypertension , 2022, Frontiers in Cardiovascular Medicine.

[5]  Kıvanç Birsoy,et al.  Targeting mitochondrial metabolism in acute myeloid leukemia , 2021, Leukemia & lymphoma.

[6]  L. Newell,et al.  Advances in acute myeloid leukemia , 2021, BMJ.

[7]  A. D’Alessandro,et al.  The STAT3-MYC Axis Promotes Survival of Leukemia Stem Cells by Regulating SLC1A5 and Oxidative Phosphorylation. , 2021, Blood.

[8]  S. Baker,et al.  Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3-ITD–Positive AML , 2021, Molecular Cancer Therapeutics.

[9]  Shunqing Wang,et al.  [Effect of Competitive Antagonist of Transmembrane Glutamine Flux V-9302 on Apoptosis of Acute Myeloid Leukemia Cell Lines HL-60 and KG-1]. , 2021, Zhongguo shi yan xue ye xue za zhi.

[10]  S. Yuan,et al.  Targeting GLS1 to cancer therapy through glutamine metabolism , 2021, Clinical and Translational Oncology.

[11]  Michael J. Lukey,et al.  Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. , 2021, Trends in cancer.

[12]  C. Civin,et al.  Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia , 2020, Leukemia.

[13]  R. Bernards,et al.  A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer , 2020, eLife.

[14]  Naifu Liu,et al.  The Glutaminase Inhibitor Compound 968 Exhibits Potent in vitro and in vivo Anti-tumor Effects in Endometrial Cancer. , 2020, Anti-cancer agents in medicinal chemistry.

[15]  Yue Zhang,et al.  Antiproliferative effects of L-asparaginase in acute myeloid leukemia , 2020, Experimental and therapeutic medicine.

[16]  Ø. Bruserud,et al.  Targeting Cellular Metabolism in Acute Myeloid Leukemia and the Role of Patient Heterogeneity , 2020, Cells.

[17]  F. Dernie,et al.  Characterisation of a mitochondrial glutamine transporter provides a new opportunity for targeting glutamine metabolism in acute myeloid leukaemia. , 2020, Blood cells, molecules & diseases.

[18]  M. V. Vander Heiden,et al.  Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. , 2020, Cell metabolism.

[19]  A. Green,et al.  The role of glutaminase in cancer , 2020, Histopathology.

[20]  Delong Meng,et al.  Glutamine and asparagine activate mTORC1 independently of Rag GTPases , 2020, The Journal of Biological Chemistry.

[21]  Xudong Wang,et al.  ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma , 2019, British Journal of Cancer.

[22]  Jinlan Pan,et al.  High expression of SLC38A1 predicts poor prognosis in patients with de novo acute myeloid leukemia , 2019, Journal of cellular physiology.

[23]  T. Soga,et al.  EVI1 triggers metabolic reprogramming associated with leukemogenesis and increases sensitivity to L-asparaginase , 2019, Haematologica.

[24]  William P. Katt,et al.  Liver-Type Glutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer , 2019, Cell reports.

[25]  C. Wood,et al.  Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia , 2019, Molecular Cancer Therapeutics.

[26]  H. Schwalbe,et al.  Metabolic Plasticity of Acute Myeloid Leukemia , 2019, Cells.

[27]  C. Eberhart,et al.  Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma12 , 2019, Translational oncology.

[28]  J. Weinstein,et al.  Glutaminase Activity of L-Asparaginase Contributes to Durable Preclinical Activity against Acute Lymphoblastic Leukemia , 2019, Molecular Cancer Therapeutics.

[29]  G. Kaspers,et al.  Acute myeloid leukaemia niche regulates response to L‐asparaginase , 2019, British journal of haematology.

[30]  T. Leblanc,et al.  Shifting paradigms in the treatment of older adults with AML. , 2019, Seminars in hematology.

[31]  Jie Hao,et al.  Identification of novel serum biomarker for the detection of acute myeloid leukemia based on liquid chromatography‐mass spectrometry , 2019, Journal of pharmaceutical and biomedical analysis.

[32]  Shiyong Li,et al.  Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression , 2019, Nature Metabolism.

[33]  K. Takenaka,et al.  Reinforce the antitumor activity of CD8+ T cells via glutamine restriction , 2018, Cancer science.

[34]  A. D’Alessandro,et al.  Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. , 2018, Cancer cell.

[35]  Lai Wang,et al.  The role of ASCT2 in cancer: A review , 2018, European journal of pharmacology.

[36]  K. Lemberg,et al.  We're Not “DON” Yet: Optimal Dosing and Prodrug Delivery of 6-Diazo-5-oxo-L-norleucine , 2018, Molecular Cancer Therapeutics.

[37]  A. D’Alessandro,et al.  Targeting Glutamine Metabolism and Redox State for Leukemia Therapy , 2018, Clinical Cancer Research.

[38]  L. di Lisio,et al.  Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. , 2018, Blood.

[39]  A. D’Alessandro,et al.  Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia. , 2017, Experimental hematology.

[40]  Chih-Hung Chou,et al.  α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming , 2017, Nature Immunology.

[41]  S. Venneti,et al.  Glutaminolysis: A Hallmark of Cancer Metabolism. , 2017, Annual review of biomedical engineering.

[42]  J. Cortes,et al.  Treatment of Relapsed/Refractory Acute Myeloid Leukemia , 2017, Current Treatment Options in Oncology.

[43]  J. Velez,et al.  Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes , 2016, Oncotarget.

[44]  C. Dang,et al.  From Krebs to clinic: glutamine metabolism to cancer therapy , 2016, Nature Reviews Cancer.

[45]  A. Pinto,et al.  Inhibition of glucose metabolism prevents glycosylation of the glutamine transporter ASCT2 and promotes compensatory LAT1 upregulation in leukemia cells , 2016, Oncotarget.

[46]  S. Bröer,et al.  Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells* , 2016, The Journal of Biological Chemistry.

[47]  U. Günther,et al.  Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation , 2016, PloS one.

[48]  Asim Khwaja,et al.  Acute myeloid leukaemia , 2016, Nature Reviews Disease Primers.

[49]  G. Qing,et al.  Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2 , 2015, Oncotarget.

[50]  S. Demo,et al.  Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. , 2015, Blood.

[51]  M. V. Vander Heiden,et al.  Famine versus feast: understanding the metabolism of tumors in vivo. , 2015, Trends in biochemical sciences.

[52]  Thijs J. Hagenbeek,et al.  L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[53]  M. Minden,et al.  Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. , 2014, Experimental hematology.

[54]  Wenwei Hu,et al.  Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma , 2014, Oncotarget.

[55]  Jennifer B Dennison,et al.  Antitumor Activity of the Glutaminase Inhibitor CB-839 in Triple-Negative Breast Cancer , 2014, Molecular Cancer Therapeutics.

[56]  D. Bouscary,et al.  Targeting glutamine uptake in AML , 2014, Oncoscience.

[57]  J. Tamburini,et al.  Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. , 2013, Blood.

[58]  Ying Chen,et al.  Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression , 2013, BMC Cancer.

[59]  C. Pui,et al.  Sequential administration of methotrexate and asparaginase in relapsed or refractory pediatric acute myeloid leukemia , 2013, Pediatric blood & cancer.

[60]  Pier Paolo Pandolfi,et al.  Cancer metabolism: fatty acid oxidation in the limelight , 2013, Nature Reviews Cancer.

[61]  C. Dang,et al.  Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. , 2010, Cancer cell.

[62]  S. Sugano,et al.  Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species , 2010, Proceedings of the National Academy of Sciences.

[63]  K. Kaluarachchi,et al.  Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. , 2010, The Journal of clinical investigation.

[64]  S. Chuncharunee,et al.  Pilot Study: Effects of Parenteral Glutamine Dipeptide Supplementation on Neutrophil Functions and Prevention of Chemotherapy-Induced Side-Effects in Acute Myeloid Leukaemia Patients , 2008, The Journal of international medical research.

[65]  N. Curthoys,et al.  Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). , 2007, The Biochemical journal.

[66]  J. Buckley,et al.  Impact of high-dose cytarabine and asparaginase intensification on childhood acute myeloid leukemia: a report from the Childrens Cancer Group. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[67]  R. Christopherson,et al.  Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. , 1990, The Journal of biological chemistry.

[68]  E. Borden,et al.  Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in advanced sarcomas and mesotheliomas , 1990, Investigational New Drugs.

[69]  D. Matthews,et al.  Glutamine and glutamate kinetics in humans. , 1986, The American journal of physiology.

[70]  M. Arakawa,et al.  Effect of L-glutamine antagonists on 5-phosphoribosyl 1-pyrophosphate levels in P388 leukemia and in murine colon adenocarcinomas in vivo. , 1982, Biochemical pharmacology.

[71]  H. Rosenfeld,et al.  Enhancement of antitumor activity of glutamine antagonists 6-diazo-5-oxo-L-norleucine and acivicin in cell culture by glutaminase-asparaginase. , 1981, Cancer research.

[72]  T. Onuma,et al.  Amino acid requirements in vitro of human leukemic cells. , 1971, Cancer research.

[73]  J. Holland,et al.  Effects of L-asparaginase in acute myelocytic leukemia. , 1969, JAMA.

[74]  E. Sausville,et al.  Asparaginase Erwinia chrysanthemi effectively depletes plasma glutamine in adult patients with relapsed/refractory acute myeloid leukemia , 2017, Cancer Chemotherapy and Pharmacology.

[75]  Chunxiao Zhou,et al.  Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. , 2016, American journal of translational research.

[76]  H. Koeffler,et al.  Effects of harringtonine in combination with acivicin, adriamycin, L-asparaginase, cytosine arabinoside, dexamethasone, fluorouracil or methotrexate on human acute myelogenous leukemia cell line KG-1 , 2004, Investigational New Drugs.

[77]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..