Atomistic potentials for trisiloxane, alkyl ethoxylate, and perfluoroalkane-based surfactants with TIP4P/2005 and application to simulations at the air-water interface.

The mechanism of superspreading, the greatly enhanced spreading of water droplets facilitated by trisiloxane surfactants, is still under debate, largely because the role and behavior of the surfactants cannot be sufficiently resolved by experiments or continuum simulations. Previous molecular dynamics studies have been performed with simple model molecules or inaccurate models, strongly limiting their explanatory power. Here we present a force field dedicated to superspreading, extending existing quantum-chemistry-based models for the surfactant and the TIP4P/2005 water model ( Abascal et al. J. Chem. Phys. , 2005 , 123 , 234505 ). We apply the model to superspreading trisiloxane surfactants and nonsuperspreading alkyl ethoxylate and perfluoroalkane surfactants at various concentrations at the air-water interface. We show that the developed model accurately predicts surface tensions, which are typically assumed important for superspreading. Significant differences between superspreading and traditional surfactants are presented and their possible relation to superspreading discussed. Although the force field has been developed for superspreading problems, it should also perform well for other simulations involving polymers or copolymers with water.

[1]  S. Bandyopadhyay,et al.  Monolayer of Monododecyl Diethylene Glycol Surfactants Adsorbed at the Air/Water Interface: A Molecular Dynamics Study , 2003 .

[2]  Rolf E. Isele-Holder,et al.  Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. , 2012, The Journal of chemical physics.

[3]  D. Wilcock Vapor Pressure-Viscosity Relations in Methylpolysiloxanes , 1946 .

[4]  W. Henderson,et al.  Characterization of synthetic and commercial trisiloxane surfactant materials , 2004 .

[5]  G. Grest,et al.  Interfacial Structure and Dynamics of Siloxane Systems: PDMS−Vapor and PDMS−Water , 2009 .

[6]  R. Thomas,et al.  Surfactant layers at the air/water interface: structure and composition. , 2000, Advances in colloid and interface science.

[7]  Simulation and QENS Studies of Molecular Dynamics in Aqueous Solutions of 1,2-Dimethoxyethane , 2000 .

[8]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[9]  H. Guerrero,et al.  Thermophysical study of the n-hexane or n-heptane with 1-chloropropane systems , 2011 .

[10]  Green,et al.  Theory and Experiment on the Measurement of Kinetic Rate Constants for Surfactant Exchange at an Air/Water Interface. , 1998, Journal of colloid and interface science.

[11]  D. Mohammad-Aghaie,et al.  Molecular dynamics simulations of liquid condensed to liquid expanded transitions in DPPC monolayers. , 2010, The journal of physical chemistry. B.

[12]  Jianyin Shao,et al.  Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. , 2007, Journal of chemical theory and computation.

[13]  Grant D. Smith,et al.  Development of Quantum Chemistry-Based Force Fields for Poly(ethylene oxide) with Many-Body Polarization Interactions , 2003 .

[14]  I. Shepherd,et al.  Conformation of poly(ethylene oxide) in the solid state, melt and solution measured by Raman scattering , 1975 .

[15]  Stan Moore,et al.  Characteristics of thermal conductivity in classical water models. , 2013, The Journal of chemical physics.

[16]  Huai Sun,et al.  Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties , 1997 .

[17]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[18]  Capillary waves at the liquid-vapor interface and the surface tension of water. , 2006, The Journal of chemical physics.

[19]  F. Guittard,et al.  Fluorosurfactants at structural extremes: adsorption and aggregation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[20]  V. Starov,et al.  Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment , 2010 .

[21]  O. Borodin,et al.  A Quantum Chemistry Based Force Field for Perfluoroalkanes and Poly(tetrafluoroethylene) , 2002 .

[22]  O. Borodin,et al.  MD Simulations and Experimental Study of Structure, Dynamics, and Thermodynamics of Poly(ethylene oxide) and Its Oligomers , 2003 .

[23]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[24]  Árpád Vincze,et al.  A new method for determining the interfacial molecules and characterizing the surface roughness in computer simulations. Application to the liquid–vapor interface of water , 2008, J. Comput. Chem..

[25]  J. Venzmer Superspreading — 20 years of physicochemical research , 2011 .

[26]  P. Kiss,et al.  A systematic development of a polarizable potential of water. , 2013, The Journal of chemical physics.

[27]  D. Bedrov,et al.  Molecular dynamics simulations of 1,2-dimethoxyethane in aqueous solution: Influence of the water potential , 1999 .

[28]  S. Bhattacharyya,et al.  Thermodynamics of chain-molecule mixtures : heats of mixing of linear methylsiloxanes , 1968 .

[29]  G. Maurer,et al.  Experimental Results for the Limiting Activity Coefficients in Some Binary and Ternary Mixtures of Organic Components , 2000 .

[30]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[31]  Carlos Vega,et al.  Simulating water with rigid non-polarizable models: a general perspective. , 2011, Physical chemistry chemical physics : PCCP.

[32]  J. Koplik,et al.  Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. Bedrov,et al.  Quantum-Chemistry-Based Force Field for 1,2-Dimethoxyethane and Poly(ethylene oxide) in Aqueous Solution , 1998 .

[34]  Gary S. Grest,et al.  Surface tension of normal and branched alkanes , 2007 .

[35]  E. Ruckenstein Superspreading: A possible mechanism , 2012 .

[36]  Yan Xia,et al.  End group effect on the thermal response of narrow-disperse poly (n -isopropylacrylamide) prepared by atom transfer radical polymerization , 2006 .

[37]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[38]  Susana Zeppieri,et al.  Interfacial Tension of Alkane + Water Systems† , 2001 .

[39]  Paolo Bientinesi,et al.  Multilevel summation for dispersion: a linear-time algorithm for r(-6) potentials. , 2013, The Journal of chemical physics.

[40]  D. Wasan,et al.  Superspreading mechanisms: An overview , 2011 .

[41]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[42]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[43]  L. Lepori,et al.  Volume changes on mixing perfluoroalkanes with alkanes or ethers at 298.15 K , 2002 .

[44]  J. Koberstein,et al.  End group effects on monolayers of functionally-terminated poly(dimethylsiloxanes) at the air-water interface , 1994 .

[45]  Martin Z. Bazant,et al.  Multiscale modeling in granular flow , 2007 .

[46]  A. Paul,et al.  Fluorinated Nonionic Surfactants Bearing Either CF3− or H−CF2− Terminal Groups: Adsorption at the Surface of Aqueous Solutions , 2001 .

[47]  S. Bandyopadhyay,et al.  Molecular Dynamics Study of a Surfactant Monolayer Adsorbed at the Air/Water Interface. , 2005, Journal of chemical theory and computation.

[48]  J. I. Siepmann,et al.  Pressure dependence of the vapor-liquid-liquid phase behavior in ternary mixtures consisting of n-alkanes, n-perfluoroalkanes, and carbon dioxide. , 2005, The journal of physical chemistry. B.

[49]  Liu Shi,et al.  C12E6 and SDS surfactants simulated at the vacuum-water interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[50]  I. McLure,et al.  Thermodynamics of n-alkane + dimethylsiloxane mixtures. Part 4.—Surface tensions , 1982 .

[51]  S. Achilefu,et al.  Synthesis of monodisperse perfluoroalkyl–oxyethylene surfactants with methoxy capping: surfactants of high chemical inertness , 1990 .

[52]  A. Frischknecht,et al.  Improved United Atom Force Field for Poly(dimethylsiloxane) , 2003 .

[53]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[54]  F. Vesely,et al.  Enthalpies of vaporization at high pressures for methanol, ethanol, propan-1-ol, propan-2-ol, hexane, and cyclohexane , 1988 .

[55]  V. Starov,et al.  The Superspreading Effect of Trisiloxane Surfactant Solutions , 2001 .

[56]  J. Koplik,et al.  Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions , 2009 .

[57]  Gary S Grest,et al.  Application of Ewald summations to long-range dispersion forces. , 2007, The Journal of chemical physics.

[58]  Istvan Kolossvary,et al.  Superspreading driven by Marangoni flow. , 2002, Advances in colloid and interface science.

[59]  L. Lepori,et al.  Determination of the excess enthalpy of binary mixtures from the measurements of the heat of solution of the components: application to the perfluorohexane + hexane mixture , 2000 .

[60]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[61]  J. Koberstein,et al.  Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane) , 1993 .

[62]  E. Rilo,et al.  Surface Tension Deviations and Excess Molar Volumes on the Ternary System Propyl Propanoate + Hexane + p-Xylene at 298.15 K , 2010 .

[63]  Nitin Kumar,et al.  Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. , 2003, Journal of colloid and interface science.

[64]  R. Crooks,et al.  Corrosion passivation of gold by n-alkanethiol self-assembled monolayers: Effect of chain length and end group , 1998 .

[65]  P. Rossky,et al.  Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules , 2003 .

[66]  Jirí Janecek,et al.  Long range corrections in inhomogeneous simulations. , 2006, The journal of physical chemistry. B.

[67]  S. Bandyopadhyay,et al.  Hydrogen bond lifetime dynamics at the interface of a surfactant monolayer. , 2006, The journal of physical chemistry. B.

[68]  V. Starov,et al.  Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 1. Experimental results , 2010 .

[69]  Peizi Wang,et al.  Excess Molar Volumes and Surface Tensions of Trimethylbenzene + Ethylene Glycol Ester at 298.15 K and 313.15 K , 2006 .

[70]  Ekta Khurana,et al.  Gemini surfactants at the air/water interface: a fully atomistic molecular dynamics study. , 2006, The journal of physical chemistry. B.

[71]  R. Hill Superspreading : Thermodynamic and theoretical aspects , 1998 .

[72]  G. Saville,et al.  Computer simulation of a gas–liquid surface. Part 1 , 1977 .

[73]  L. An,et al.  A molecular-dynamics simulation study on the dependence of Lennard-Jones gas-liquid phase diagram on the long-range part of the interactions. , 2005, The Journal of chemical physics.

[74]  R. H. Boyd,et al.  Prediction of polymer crystal structures and properties: polyethylene and poly(oxymethylene) , 1988 .

[75]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[76]  Oleg Borodin,et al.  A revised quantum chemistry‐based potential for poly(ethylene oxide) and its oligomers in aqueous solution , 2002, J. Comput. Chem..

[77]  D. Paschek,et al.  Modeling of aqueous poly(oxyethylene) solutions: 1. Atomistic simulations. , 2008, The journal of physical chemistry. B.

[78]  Grant D. Smith,et al.  A Quantum Chemistry Based Force Field for Poly(dimethylsiloxane) , 2004 .

[79]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[80]  K. Ananthapadmanabhan,et al.  A study of the solution, interfacial and wetting properties of silicone surfactants , 1990 .

[81]  K. Fichthorn,et al.  Molecular dynamics simulation of nanodroplet spreading enhanced by linear surfactants. , 2006, The Journal of chemical physics.

[82]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[83]  William L. Jorgensen,et al.  Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations , 2001 .

[84]  M. Klein,et al.  Molecular Dynamics Study of the Poly(oxyethylene) Surfactant C12E2 and Water , 2000 .

[85]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[86]  Joel Koplik,et al.  Simulations of Surfactant-Enhanced Spreading , 2001, International Conference on Computational Science.

[87]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[88]  J. Coutinho,et al.  Surface Tension of Liquid Fluorocompounds , 2006 .

[89]  P. Mukerjee,et al.  Interfacial tensions of perfluorohexane and perfluorodecalin against water , 1989 .

[90]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[91]  End group effect on electrical transport through individual molecules: A microscopic study , 2003, cond-mat/0312495.

[92]  M. Shanahan,et al.  Dynamics of Trisiloxane Wetting: Effects of Diffusion and Surface Hydrophobicity , 2010 .

[93]  Rolf E. Isele-Holder,et al.  Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation. , 2013, Journal of chemical theory and computation.

[94]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[95]  M. Ward,et al.  Superspreading of Aqueous Films Containing Trisiloxane Surfactant on Mineral Oil , 1997 .

[96]  R. Craster,et al.  On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces , 2011, Journal of Fluid Mechanics.

[97]  Ding-Yu Peng,et al.  On the long-range corrections to computer simulation results for the Lennard-Jones vapor-liquid interface , 1997 .