The neural basis of associative reward learning in honeybees

[1]  Derek Coleman,et al.  All rights reserved , 1997 .

[2]  B. H. Smith,et al.  An analysis of blocking in odorant mixtures: an increase but not a decrease in intensity of reinforcement produces unblocking. , 1997, Behavioral neuroscience.

[3]  G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies , 1996, Trends in Neurosciences.

[4]  R. Menzel,et al.  Symmetry perception in an insect , 1996, Nature.

[5]  G. Laurent,et al.  Temporal Representations of Odors in an Olfactory Network , 1996, The Journal of Neuroscience.

[6]  R. Malaka,et al.  Real-time models of classical conditioning , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[7]  Ronald L. Davis,et al.  DAMB, a Novel Dopamine Receptor Expressed Specifically in Drosophila Mushroom Bodies , 1996, Neuron.

[8]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[9]  T. Robbins,et al.  Neurobehavioural mechanisms of reward and motivation , 1996, Current Opinion in Neurobiology.

[10]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[11]  U. Müller,et al.  Inhibition of Nitric Oxide Synthase Impairs a Distinct Form of Long-Term Memory in the Honeybee, Apis mellifera , 1996, Neuron.

[12]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[14]  Paul S. Katz,et al.  Intrinsic neuromodulation: altering neuronal circuits from within , 1996, Trends in Neurosciences.

[15]  E R Kandel,et al.  Presynaptic facilitation revisited: state and time dependence , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Peter Dayan,et al.  Bee foraging in uncertain environments using predictive hebbian learning , 1995, Nature.

[17]  U. Müller,et al.  PKA activity in the antennal lobe of honeybees is regulated by chemosensory stimulation in vivo , 1995, Brain Research.

[18]  U. Müller,et al.  Octopamine mediates rapid stimulation of protein kinase A in the antennal lobe of honeybees. , 1995, Journal of neurobiology.

[19]  Tim Tully,et al.  Dissection of memory formation: from behavioral pharmacology to molecular genetics , 1995, Trends in Neurosciences.

[20]  M. Hammer,et al.  Learning and memory in the honeybee , 1995 .

[21]  M. Hasselmo Neuromodulation and cortical function: modeling the physiological basis of behavior , 1995, Behavioural Brain Research.

[22]  M. Hammer,et al.  Food-induced arousal and nonassociative learning in honeybees: dependence of sensitization on the application site and duration of food stimulation. , 1994, Behavioral and neural biology.

[23]  S. Kreissl,et al.  Octopamine‐like immunoreactivity in the brain and subesophageal ganglion of the honeybee , 1994, The Journal of comparative neurology.

[24]  C. Stevens CREB and memory consolidation , 1994, Neuron.

[25]  B. H. Smith,et al.  The olfactory memory of the honeybee Apis mellifera. II. Blocking between odorants in binary mixtures. , 1994, The Journal of experimental biology.

[26]  R Menzel,et al.  Ionic currents of Kenyon cells from the mushroom body of the honeybee , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Alan Gelperin,et al.  Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc , 1994, Nature.

[28]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[29]  G. Bicker,et al.  Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. , 1994, Journal of neurophysiology.

[30]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[31]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[32]  X. Sun,et al.  Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours , 1993 .

[33]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[35]  G. Bicker,et al.  Habituation of an appetitive reflex in the honeybee. , 1992, Journal of neurophysiology.

[36]  W. Singer,et al.  Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex , 1992, Brain Research.

[37]  P. Braunig Suboesophageal DUM neurons innervate the principal neuropiles of the locust brain , 1991 .

[38]  M. Gabriel,et al.  Learning and Computational Neuroscience: Foundations of Adaptive Networks , 1990 .

[39]  P. Holland Event representation in Pavlovian conditioning: Image and action , 1990, Cognition.

[40]  S. Schäfer,et al.  Dopamine‐like immunoreactivity in the brain and suboesophageal ganglion of the honeybee , 1989, The Journal of comparative neurology.

[41]  V. Rehder Sensory pathways and motoneurons of the proboscis reflex in the suboesophageal ganglion of the honey bee , 1989, The Journal of comparative neurology.

[42]  Randolf Menzel,et al.  Chemical codes for the control of behaviour in arthropods , 1989, Nature.

[43]  T. Kingan,et al.  Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity , 1985, Brain Research.

[44]  A Borst,et al.  Drosophila mushroom body mutants are deficient in olfactory learning. , 1985, Journal of neurogenetics.

[45]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[46]  R. Menzel,et al.  Localization of short‐term memory in the brain of the bee, Apis mellifera , 1980 .

[47]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[48]  Joel L. Davis,et al.  In : Models of Information Processing in the Basal Ganglia , 2008 .

[49]  R. Menzel,et al.  Learning and memory in honeybees: from behavior to neural substrates. , 1996, Annual review of neuroscience.

[50]  U. Müller,et al.  Cyclic nucleotide-dependent protein kinases in the neural tissue of the honeybee Apis mellifera , 1991 .

[51]  D. Olton,et al.  Neurobiology of Comparative Cognition , 1990 .

[52]  Daniel Flanagan,et al.  An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae) , 1989 .

[53]  L. Strong,et al.  Arthropod brain (its evolution, development, structure and functions): A. P. Gupta (Ed.), 588 pp. Published by John Wiley & Sons, New York, 1987. Price £60. ISBN 0-471-82811-4 , 1988 .

[54]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[55]  W. F. Prokasy,et al.  Classical conditioning II: Current research and theory. , 1972 .