Spaceborne MIMO Synthetic Aperture Radar for Multimodal Operation

In this paper, we introduce a novel multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) concept for multimodal operation. The proposed system employs waveforms based on the orthogonal frequency division multiplexing (OFDM) technique and digital beamforming (DBF) on receive. Thereby, it becomes feasible to maximize spatial degrees of freedom, which are necessary for the multimodal operation. The proposed MIMO SAR system produces multiple high-resolution wide-swath SAR imageries that are used for coherent postprocessing. Through this paper, we aim to open up a new perspective of using MIMO concept for a wide-swath SAR imaging with high resolution in interferometric and polarimetric modes, based on OFDM and DBF techniques. Therefore, this paper encompasses broad theoretical backgrounds and general system design issues as well as specific signal processing techniques and aspects.

[1]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[2]  G. Krieger,et al.  SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR , 2009, 2009 IEEE Radar Conference.

[3]  Thomas Zwick,et al.  An OFDM System Concept for Joint Radar and Communications Operations , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[4]  Theodore S. Rappaport,et al.  Wireless Communications: Principles and Practice (2nd Edition) by , 2012 .

[5]  Paco Lopez-Dekker,et al.  Interferometric Ka-band SAR with DBF capability , 2012 .

[6]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  Marco Schwerdt,et al.  On the Processing of Very High Resolution Spaceborne SAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Patrick Robertson,et al.  Analysis of Doppler Spread Perturbations in OFDM(A) Systems , 2000, Eur. Trans. Telecommun..

[9]  Pierfrancesco Lombardo,et al.  Multistatic and MIMO Distributed ISAR for Enhanced Cross-Range Resolution of Rotating Targets , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Gerhard Krieger,et al.  MIMO SAR techniques and trades , 2013, 2013 European Radar Conference.

[11]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Werner Wiesbeck,et al.  SDRS: software-defined radar sensors , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[13]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[14]  Marwan Younis,et al.  MIMO-SAR and the orthogonality confusion , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Leo P. Ligthart,et al.  Signal Processing for FMCW SAR , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Jung Hyo Kim,et al.  Multiple-Input Multiple-Output Synthetic Aperture Radar (SAR) for Multimodal Operation , 2011 .

[17]  R. T. Hoctor,et al.  The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging , 1990, Proc. IEEE.

[18]  Gerhard Krieger,et al.  First Spaceborne Demonstration of Digital Beamforming for Azimuth Ambiguity Suppression , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  G. Krieger,et al.  Potential of digital beamforming in bi- and multistatic SAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[21]  Wen-Qin Wang Space–Time Coding MIMO-OFDM SAR for High-Resolution Imaging , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[23]  R. Sullivan Microwave Radar Imaging And Advanced Concepts , 2000 .

[24]  G. Krieger,et al.  Analysis of system concepts for bi- and multi-static SAR missions , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[25]  Gerhard Krieger,et al.  A Concept for a High Performance Reflector-Based X-Band SAR , 2010 .

[26]  Kamal Sarabandi,et al.  Microwave Radar and Radiometric Remote Sensing , 2013 .

[27]  Helko Breit,et al.  TerraSAR-X Ground Segment Basic Product Specification Document , 2008 .

[28]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[29]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[30]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[31]  Xiang Li,et al.  Effect analysis and velocity estimation of moving target based on MIMO SAR system , 2012, 2012 IEEE 11th International Conference on Signal Processing.

[32]  Vishal Riche,et al.  Study of receiver design in a MIMO SAR configuration , 2011, 2011 8th European Radar Conference.

[33]  Nicolas Gebert,et al.  Multi-Channel Azimuth Processing for High-Resolution Wide-Swath SAR Imaging , 2009 .

[34]  Joachim H. G. Ender Along-track array processing for MIMO-SAR/MTI , 2008 .

[35]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[36]  Wen-Qin Wang,et al.  MIMO SAR imaging: Potential and challenges , 2013, IEEE Aerospace and Electronic Systems Magazine.

[37]  P. Lombardo,et al.  2D-MIMO SAR/ISAR imaging of moving targets with reconfigurable formation of platforms , 2012 .

[38]  Gerhard Krieger,et al.  Advanced Multi-Channel SAR Imaging - Measured Data Demonstration , 2009 .

[39]  Werner Wiesbeck,et al.  A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters in SAR , 2013, IEEE Geoscience and Remote Sensing Letters.

[40]  Alberto Moreira,et al.  A Novel OFDM Waveform for Fully Polarimetric SAR Data Acquisition , 2010 .

[41]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[42]  Christoph H. Gierull,et al.  Improved Space-Based Moving Target Indication via Alternate Transmission and Receiver Switching , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Gerhard Krieger,et al.  TANDEM-L: MONITORING THE EARTH'S DYNAMICS WITH INSAR AND POL-INSAR , 2009 .

[44]  Pierfrancesco Lombardo,et al.  Exploiting MIMO SAR Potentialities With Efficient Cross-Track Constellation Configurations for Improved Range Resolution , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[45]  K. Tomiyasu,et al.  Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface , 1978, Proceedings of the IEEE.

[46]  Gerhard Krieger,et al.  Advanced digital beamforming concepts for future SAR systems , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[47]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[48]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[49]  A. Brenner,et al.  ARTINO: A New High Resolution 3D Imaging Radar System on an Autonomous Airborne Platform , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[50]  Mo Huang,et al.  The waveform analysis and signal processing for space-borne MIMO-SAR , 2012 .

[51]  Zheng Bao,et al.  Performance improvement for constellation SAR using signal processing techniques , 2006 .

[52]  Ishuwa C. Sikaneta,et al.  MIMO SAR Processing for Multichannel High-Resolution Wide-Swath Radars , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Dmitriy Garmatyuk,et al.  Radar and data communication fusion with UWB-OFDM software-defined system , 2009, 2009 IEEE International Conference on Ultra-Wideband.