Synergistic theoretical and experimental study on the ion dynamics of bis(trifluoromethanesulfonyl)imide-based alkali metal salts for solid polymer electrolytes.

Model validation of a well-known class of solid polymer electrolyte (SPE) is utilized to predict the ionic structure and ion dynamics of alternative alkali metal ions, leading to advancements in Na-, K-, and Cs-based SPEs for solid-state alkali metal batteries. A comprehensive study based on molecular dynamics (MD) is conducted to simulate ion coordination and the ion transport properties of poly(ethylene oxide) (PEO) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt across various LiTFSI concentrations. Through validation of the MD simulation results with experimental techniques, we gain a deeper understanding of the ionic structure and dynamics in the PEO/LiTFSI system. This computational approach is then extended to predict ion coordination and transport properties of alternative alkali metal ions. The ionic structure in PEO/LiTFSI is significantly influenced by the LiTFSI concentration, resulting in different lithium-ion transport mechanisms for highly concentrated or diluted systems. Substituting lithium with sodium, potassium, and cesium reveals a weaker cation-PEO coordination for the larger cesium-ion. However, sodium-ion based SPEs exhibit the highest cation transport number, indicating the crucial interplay between salt dissociation and cation-PEO coordination for achieving optimal performance in alkali metal SPEs.

[1]  Jun-Wei Lim,et al.  Lithium in a Sustainable Circular Economy: A Comprehensive Review , 2023, Processes.

[2]  Lixin Qiao,et al.  Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt , 2023, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  Jiaqi Huang,et al.  Lithium‐Sulfur Batteries: Current Achievements and Further Development , 2022, Batteries & Supercaps.

[4]  R. Cao,et al.  Recent Progress in Rechargeable Sodium Metal Batteries: A Review. , 2022, Chemistry.

[5]  Jiabao Li,et al.  Recent Development of Electrolyte Engineering for Sodium Metal Batteries , 2022, Batteries.

[6]  Jinqiu Zhou,et al.  The current status of sodium metal anodes for improved sodium batteries and its future perspectives , 2022, APL Materials.

[7]  G. Sui,et al.  Dynamical Ion Association and Transport Properties in PEO-LiTFSI Electrolytes: Effect of Salt Concentration. , 2022, The journal of physical chemistry. B.

[8]  Omar Farrok,et al.  Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic , 2022, Renewable and Sustainable Energy Reviews.

[9]  Chang Zhang,et al.  All‐in‐One Structured Lithium‐Metal Battery , 2022, Advanced science.

[10]  P. Théato,et al.  Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode , 2022, ACS Applied Polymer Materials.

[11]  Chen Ling A review of the recent progress in battery informatics , 2022, npj Computational Materials.

[12]  Yuegang Zhang,et al.  Effect of Mg Cation Diffusion Coefficient on Mg Dendrite Formation. , 2022, ACS applied materials & interfaces.

[13]  J. Carrasco,et al.  Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Na‐O2 Battery Performance , 2021, Advanced Energy Materials.

[14]  Luyi Yang,et al.  Synergistic Dissociation-and-Trapping Effect to Promote Li-Ion Conduction in Polymer Electrolytes via Oxygen Vacancies. , 2021, Small.

[15]  T. Tokumasu,et al.  Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries , 2021, Micromachines.

[16]  Jonas Mindemark,et al.  Polymer-based Solid State Batteries , 2021 .

[17]  Jiaxin Zheng,et al.  Self‐Healing Mechanism of Lithium in Lithium Metal , 2021, Advanced science.

[18]  Vsevolod Nikolskiy,et al.  GPU-accelerated molecular dynamics: State-of-art software performance and porting from Nvidia CUDA to AMD HIP , 2021, Int. J. High Perform. Comput. Appl..

[19]  J. Carrasco,et al.  Nanoscale modelling of polymer electrolytes for rechargeable batteries , 2021 .

[20]  M. Winter,et al.  Cation‐Assisted Lithium‐Ion Transport for High‐Performance PEO‐based Ternary Solid Polymer Electrolytes , 2021, Angewandte Chemie.

[21]  Yang Wang,et al.  Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement , 2021, Journal of Materials Science.

[22]  Jeremiah A. Johnson,et al.  Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties , 2021, Nature Communications.

[23]  Kinde Anlay Fante,et al.  A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration , 2020, Sustainability.

[24]  D. Brandell,et al.  Effects of Solvent Polarity on Li-ion Diffusion in Polymer Electrolytes: An All-Atom Molecular Dynamics Study with Charge Scaling , 2020, The journal of physical chemistry. B.

[25]  M. Martínez-Ibañez,et al.  Insight into the Ionic Transport of Solid Polymer Electrolytes in Polyether and Polyester Blends , 2020 .

[26]  Lixin Qiao,et al.  Trifluoromethyl-free anion for highly stable lithium metal polymer batteries , 2020 .

[27]  B. Kirchner,et al.  TRAVIS-A free analyzer for trajectories from molecular simulation. , 2020, The Journal of chemical physics.

[28]  S. Pélissier,et al.  Modelling Lithium-Ion Battery Ageing in Electric Vehicle Applications—Calendar and Cycling Ageing Combination Effects , 2020, Batteries.

[29]  Yefeng Yao,et al.  Probing the Dynamics of Li+ Ions on the Crystal Surface: A Solid-State NMR Study , 2020, Polymers.

[30]  Jiaqi Huang,et al.  Recent advances in understanding dendrite growth on alkali metal anodes , 2019, EnergyChem.

[31]  Martin Fechner,et al.  More bang for your buck: Improved use of GPU nodes for GROMACS 2018 , 2019, J. Comput. Chem..

[32]  D. Brandell,et al.  Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? , 2019, Chemical reviews.

[33]  M. Martínez-Ibañez,et al.  Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts , 2019, ChemElectroChem.

[34]  Xin-bo Zhang,et al.  Alkali Metal Anodes for Rechargeable Batteries , 2019, Chem.

[35]  William A. Goddard,et al.  Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration , 2018, Macromolecules.

[36]  Jonathan P. Mailoa,et al.  Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI , 2018, Chemistry of Materials.

[37]  Alison Stoddart Alkali metal batteries: Preventing failure , 2018 .

[38]  Tao Gao,et al.  How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. , 2017, Journal of the American Chemical Society.

[39]  Amit Samanta,et al.  Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from Ab Initio Molecular Dynamics Simulations , 2017 .

[40]  D. Brandell,et al.  Modelling the Polymer Electrolyte/Li-Metal Interface by Molecular Dynamics simulations , 2017 .

[41]  Michael A Webb,et al.  Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes. , 2016, The journal of physical chemistry letters.

[42]  Yuyan Shao,et al.  Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism , 2014 .

[43]  G. Wilde,et al.  Salt-Concentration Dependence of the Glass Transition Temperature in PEO–NaI and PEO–LiTFSI Polymer Electrolytes , 2013 .

[44]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[45]  Barbara Kirchner,et al.  TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories , 2011, Journal of Cheminformatics.

[46]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[47]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[48]  Alex H de Vries,et al.  A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. , 2009, The journal of physical chemistry. B.

[49]  E. Birgin,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[50]  P. Johansson,et al.  Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. , 2009, The journal of physical chemistry. A.

[51]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[52]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[53]  William L. Jorgensen,et al.  Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations , 2001 .

[54]  L. Edman Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI , 2000 .

[55]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[56]  A. Bartolotta,et al.  Low-temperature excess specific heat and fragility in polymers: Crystallinity dependence , 1998 .

[57]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[58]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[59]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[60]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[61]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[62]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[63]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .