Multi-objective optimal control of chemical processes using ACADO toolkit

Abstract Many practical chemical engineering problems involve the determination of optimal trajectories given multiple and conflicting objectives. These conflicting objectives typically give rise to a set of Pareto optimal solutions. To enhance real-time decision making efficient approaches are required for determining the Pareto set in a fast and accurate way. Hereto, the current paper illustrates the use of the freely available toolkit ACADO Multi-Objective ( www.acadotoolkit.org ) on several chemical examples. The rationale behind ACADO Multi-Objective is the integration of direct optimal control methods with scalarisation-based multi-objective methods enabling the exploitation of fast deterministic gradient-based optimisation routines.

[1]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[2]  Ajay K. Ray,et al.  APPLICATIONS OF MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL ENGINEERING , 2000 .

[3]  J. Impe,et al.  Optimal design of an autothermal membrane reactor coupling the dehydrogenation of ethylbenzene to styrene with the hydrogenation of nitrobenzene to aniline , 2010 .

[4]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[5]  Ilse Smets,et al.  Optimal design of dispersive tubular reactors at steady-state using optimal control theory , 2009 .

[6]  J. V. Salcedo,et al.  A new perspective on multiobjective optimization by enhanced normalized normal constraint method , 2008 .

[7]  Filip Logist,et al.  Derivation of generic optimal reference temperature profiles for steady-state exothermic jacketed tubular reactors , 2008 .

[8]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[9]  Wolfgang Marquardt,et al.  Detection and exploitation of the control switching structure in the solution of dynamic optimization problems , 2006 .

[10]  J. Impe,et al.  Efficient deterministic multiple objective optimal control of (bio)chemical processes , 2009 .

[11]  Filip Logist,et al.  Fast Pareto set generation for nonlinear optimal control problems with multiple objectives , 2010 .

[12]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[13]  Kaisa Miettinen,et al.  On Interactive Multiobjective Optimization with NIMBUS in Chemical Process Design , 2004 .

[14]  Wolfgang Marquardt,et al.  Adaptive switching structure detection for the solution of dynamic optimization problems , 2006 .

[15]  Evaristo Chalbaud Biscaia,et al.  Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors , 2003, Comput. Chem. Eng..

[16]  H. J. Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[17]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[18]  Lorenz T. Biegler,et al.  A software environment for simultaneous dynamic optimization , 2007, Comput. Chem. Eng..

[19]  Wolfgang Marquardt,et al.  Continuous and Discrete Composite Adjoints for the Hessian of the Lagrangian in Shooting Algorithms for Dynamic Optimization , 2009, SIAM J. Sci. Comput..

[20]  Eva Balsa-Canto,et al.  DOTcvpSB, a software toolbox for dynamic optimization in systems biology , 2009, BMC Bioinformatics.

[21]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[22]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[23]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[24]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[25]  Kishalay Mitra,et al.  Multiobjective dynamic optimization of a semi-batch epoxy polymerization process , 2004, Comput. Chem. Eng..

[26]  Sebastian Sager,et al.  Numerical methods for mixed-integer optimal control problems , 2006 .

[27]  Filip Logist,et al.  Novel insights for multi-objective optimisation in engineering using Normal Boundary Intersection and (Enhanced) Normalised Normal Constraint , 2012 .

[28]  Christian Kirches,et al.  Efficient multiple objective optimal control of dynamic systems with integer controls , 2010 .

[29]  D. J. Gunn The optimization of bifunctional catalyst systems , 1967 .

[30]  Griewank,et al.  On automatic differentiation , 1988 .

[31]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[32]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[33]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[34]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[35]  X. Yi On Automatic Differentiation , 2005 .

[36]  V. Vassiliadis,et al.  Second-order sensitivities of general dynamic systems with application to optimal control problems , 1999 .

[37]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[38]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[39]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .