A Highly Reliable, Low Power Consumption, Low-Cost Multisensory Based System For Autonomous Navigational Mobile Robot

This work focuses on the collaborations of low cost multisensor system to produce a complementary collision-free path for autonomous mobile robots. The proposed algorithm is used with a modified version of A * searching algorithm to produce the shortest, and most energy-efficient path from a given initial point to a goal point. The experimental results demonstrate that the robot is capable of measuring different distances to obstacles in unknown environments. The proposed model is characterized by its low cost, low power consumption, and its efficiencies in following shortest path while avoiding collisions.

[1]  Supasate Choochaisri,et al.  Logic Macroprogramming for Wireless Sensor Networks , 2012, Int. J. Distributed Sens. Networks.

[2]  Khaled M. Elleithy,et al.  Multi-sensor based collision avoidance algorithm for mobile robot , 2015, 2015 Long Island Systems, Applications and Technology.

[3]  Kamal K. Gupta,et al.  Distributed Roadmaps for Robot Navigation in Sensor Networks , 2011, IEEE Transactions on Robotics.

[4]  K. Passino Intelligent Control : An Overview of Techniques ∗ , 2000 .

[5]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[6]  Chi-Tsun Cheng,et al.  Finding energy-efficient paths on uneven terrains , 2014, 2014 10th France-Japan/ 8th Europe-Asia Congress on Mecatronics (MECATRONICS2014- Tokyo).

[7]  K GuptaRajesh,et al.  Programming models for sensor networks , 2008 .

[8]  Roland Siegwart,et al.  SOLERO: Solar Powered Exploration Rover , 2002 .

[9]  David E. Culler,et al.  Active sensor networks , 2005, NSDI.

[10]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[11]  Oscar Castillo,et al.  Multiple Objective Genetic Algorithms for Path-planning Optimization in Autonomous Mobile Robots , 2006, Soft Comput..

[12]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[13]  Wolfram Burgard,et al.  A hybrid collision avoidance method for mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  David Sun,et al.  COUGAR: the network is the database , 2002, SIGMOD '02.

[15]  Sang Hyuk Son,et al.  EnviroTrack: towards an environmental computing paradigm for distributed sensor networks , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[16]  M. Welsh,et al.  The Regiment Macroprogramming System , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[17]  Kay Chen Tan,et al.  Evolutionary artificial potential fields and their application in real time robot path planning , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[18]  Jiannong Cao,et al.  Middleware for Wireless Sensor Networks: A Survey , 2008, Journal of Computer Science and Technology.

[19]  Monia Bellalouna,et al.  A priori methods for fault tolerance in wireless sensor networks , 2013, 2013 World Congress on Computer and Information Technology (WCCIT).

[20]  Kostas E. Bekris,et al.  Network-Guided Multi-Robot Path Planning for Resource-Constrained Planetary Rovers , 2010 .

[21]  Alpaslan Yufka,et al.  PERFORMANCE COMPARISON OF BUG ALGORITHMS FOR MOBILE ROBOTS , 2009 .

[22]  Laxman M. Waghmare,et al.  Energy efficiency and latency improving protocol for wireless sensor networks , 2013, 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[23]  Ryan Newton,et al.  Region streams: functional macroprogramming for sensor networks , 2004, DMSN '04.

[24]  Suprakash Datta,et al.  Localization in wireless sensor networks , 2007, IPSN.

[25]  Philip Levis,et al.  Maté: a tiny virtual machine for sensor networks , 2002, ASPLOS X.

[26]  P. Prasad,et al.  Localization of Sensor Networks Considering Energy Accuracy Tradeoffs , 2005, 2005 International Conference on Collaborative Computing: Networking, Applications and Worksharing.

[27]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[28]  Adrian Filipescu,et al.  The bubble rebound obstacle avoidance algorithm for mobile robots , 2010, IEEE ICCA 2010.

[29]  José M. Troya,et al.  Programming Approaches and Challenges for Wireless Sensor Networks , 2007, 2007 Second International Conference on Systems and Networks Communications (ICSNC 2007).

[30]  Yasuhisa Takizawa Node localization for sensor networks using Self-Organizing Maps , 2011, 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks.

[31]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[32]  Archana Bharathidasan,et al.  Sensor Networks : An Overview , 2002 .

[33]  Volkan Sezer,et al.  A novel obstacle avoidance algorithm: "Follow the Gap Method" , 2012, Robotics Auton. Syst..

[34]  Ramesh Govindan,et al.  Macro-programming Wireless Sensor Networks Using Kairos , 2005, DCOSS.

[35]  Steven M. LaValle,et al.  Simple and Efficient Algorithms for Computing Smooth, Collision-free Feedback Laws Over Given Cell Decompositions , 2009, Int. J. Robotics Res..

[36]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[37]  Khaled M. Elleithy,et al.  TOPOLOGY MANAGEMENT IN WIRELESS SENSOR NETWORKS : MULTI -STATE ALGORITHMS , 2012 .

[38]  Dong Sun,et al.  Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning , 2014, IEEE/ASME Transactions on Mechatronics.

[39]  Khaled M. Elleithy,et al.  High-level abstractions in wireless sensor networks: Status, taxonomy, challenges, and future directions , 2014, Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education.

[40]  N. Nalini,et al.  Active node based fault tolerance in Wireless Sensor Network , 2012, 2012 Annual IEEE India Conference (INDICON).

[41]  Dogan Ibrahim,et al.  Navigation of mobile robots in the presence of obstacles , 2010, Adv. Eng. Softw..

[42]  Jörg Krüger,et al.  Analyzing energy consumption of industrial robots , 2011, ETFA2011.

[43]  Renato Zaccaria,et al.  Planning and obstacle avoidance in mobile robotics , 2012, Robotics Auton. Syst..

[44]  Rekha Jain,et al.  Wireless Sensor Network -A Survey , 2013 .

[45]  Joao Barros,et al.  Programming Wireless Sensor Networks , 2009, Middleware for Network Eccentric and Mobile Applications.

[46]  Robert Ricci,et al.  Mobile Emulab: A Robotic Wireless and Sensor Network Testbed , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[47]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[48]  Margaret Martonosi,et al.  Impala: a middleware system for managing autonomic, parallel sensor systems , 2003, PPoPP '03.

[49]  Antonio Benitez,et al.  New technique to build probabilistic roadmap methods , 2004, 14th International Conference on Electronics, Communications and Computers, 2004. CONIELECOMP 2004..

[50]  David E. Culler,et al.  Hood: a neighborhood abstraction for sensor networks , 2004, MobiSys '04.

[51]  Byung Kook Kim,et al.  Minimum-Energy Trajectory Generation for Cornering with a Fixed Heading for Three-Wheeled Omni-Directional Mobile Robots , 2014, J. Intell. Robotic Syst..

[52]  Seoyong Shin,et al.  Integrated collision avoidance and tracking system for mobile robot , 2012, 2012 International Conference of Robotics and Artificial Intelligence.

[53]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[54]  Chi Zhou,et al.  Energy Efficiency Analysis of Multistage Cooperation in Sensor Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[55]  Rajashekhar C. Biradar,et al.  A survey on routing protocols in Wireless Sensor Networks , 2012, 2012 18th IEEE International Conference on Networks (ICON).

[56]  R. Venkateswarlu,et al.  A Simple Model for Evaluating the Scalability in Wireless Sensor Networks , 2005, 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[57]  František Duchoň,et al.  Modifications of VFH Navigation Methods for Mobile Robots , 2012 .

[59]  Zenon Chaczko,et al.  An improvement of energy aware routing in wireless sensors network , 2006 .

[60]  Luca Mottola,et al.  Programming wireless sensor networks with logical neighborhoods , 2006, InterSense '06.

[61]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[62]  Thomas Bräunl,et al.  Performance Comparison of Bug Navigation Algorithms , 2007, J. Intell. Robotic Syst..

[63]  K. Elleithy,et al.  Programming Models for Wireless Sensor Networks: Status, Taxonomy, Challenges, and Future Directions , 2015 .

[64]  Weiming Shen,et al.  Collaborative wireless sensor networks: A survey , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[65]  Zongli Lin,et al.  Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig , 2012, IEEE/ASME Transactions on Mechatronics.

[66]  Sazali Yaacob,et al.  Designing Omni-Directional Mobile Robot with Mecanum Wheel , 2006 .

[67]  Zheping Yan,et al.  Obstacle Avoidance for Unmanned Undersea Vehicle in Unknown Unstructured Environment , 2013 .

[68]  H. Alt,et al.  Visibility graphs and obstacle-avoiding shortest paths , 1988, ZOR Methods Model. Oper. Res..

[69]  Yung-Hsiang Lu,et al.  Energy-Effcient Scheduling for Autonomous Mobile Robots , 2006, 2006 IFIP International Conference on Very Large Scale Integration.

[70]  Chao Wang,et al.  Fault and intrusion tolerance of wireless sensor networks , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[71]  Marco Bibuli,et al.  A collision avoidance algorithm based on the virtual target approach for cooperative unmanned surface vehicles , 2012, 22nd Mediterranean Conference on Control and Automation.

[72]  Y. Charlie Hu,et al.  Energy-efficient mobile robot exploration , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[73]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[74]  Jameela Al-Jaroodi,et al.  Middleware for Robotics: A Survey , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[75]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[76]  Matt Welsh,et al.  Programming Sensor Networks Using Abstract Regions , 2004, NSDI.

[77]  Kay Römer,et al.  Middleware challenges for wireless sensor networks , 2002, MOCO.

[78]  Bian Xin-qian,et al.  AUV local path planning based on virtual potential field , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[79]  N. Marriwala,et al.  An approach to increase the wireless sensor network lifetime , 2012, 2012 World Congress on Information and Communication Technologies.

[80]  Urs Bischoff,et al.  A State-Based Programming Model and System for Wireless Sensor Networks , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07).

[81]  Ajey Kumar,et al.  Scalability in an adaptive cooperative system for wireless sensor networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[82]  Luca Mottola,et al.  Logical Neighborhoods: A Programming Abstraction for Wireless Sensor Networks , 2006, DCOSS.

[83]  Enamul Hoque,et al.  Bundle: A Group-Based Programming Abstraction for Cyber-Physical Systems , 2010, IEEE Transactions on Industrial Informatics.

[84]  Yu Hen Hu,et al.  Collaborative Sampling in Wireless Sensor Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.