On the automorphism group of a cone

Abstract Let V be a real finite dimensional vector space, and let C be a full cone in C . In Sec. 3 we show that the group of automorphisms of a compact convex subset of V is compact in the uniform topology, and relate the group of automorphisms of C to the group of automorphisms of a compact convex cross-section of C . This section concludes with an application which generalizes the result that a proper Lorentz transformation has an eigenvector in the light cone. In Sec. 4 we relate the automorphism group of C to that of its irreducible components. In Sec. 5 we show that every compact group of automorphisms of C leaves a compact convex cross-section invariant. This result is applied to show that if C is a full polyhedral cone, then the automorphism group of C is the semidirect product of the (finite) automorphism group of a polytopal cross-section and a vector group whose dimension is equal to the number of irreducible components of C . An example shows that no such result holds for more general cones.