Residual-based variational multiscale methods for turbulent flows and fluid-structure interaction
暂无分享,去创建一个
[1] P Jamet,et al. Numerical solution of the eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces , 1975 .
[2] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[3] C. Truesdell,et al. The Non-Linear Field Theories Of Mechanics , 1992 .
[4] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[5] Christian H. Whiting,et al. STABILIZED FINITE ELEMENT METHODS FOR FLUID DYNAMICS USING A HIERARCHICAL BASIS , 1999 .
[6] Charbel Farhat,et al. A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .
[7] Peter Hansbo,et al. A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .
[8] Erich Rothe,et al. Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben , 1930 .
[9] Thomas J. R. Hughes,et al. What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .
[10] L. Prandtl. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .
[11] Gerald Farin,et al. NURBS: From Projective Geometry to Practical Use , 1999 .
[12] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[13] Kenneth E. Jansen,et al. Spatial test filters for dynamic model large‐eddy simulation with finite elements , 2002 .
[14] David F. Rogers,et al. An Introduction to NURBS , 2000 .
[15] Charbel Farhat,et al. A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .
[16] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[17] Ramon Codina,et al. Dynamic subscales in the finite element approximation of thermally coupled incompressible flows , 2007 .
[18] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[19] Volker John,et al. On large Eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows , 2006 .
[20] Jurijs Bazilevs,et al. Isogeometric analysis of turbulence and fluid -structure interaction , 2006 .
[21] N. Adams,et al. An approximate deconvolution procedure for large-eddy simulation , 1999 .
[22] Thomas J. R. Hughes,et al. Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .
[23] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[24] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[25] B. Geurts,et al. Large-eddy simulation of the turbulent mixing layer , 1997, Journal of Fluid Mechanics.
[26] Peter Deuflhard,et al. Numerische Mathematik II , 1994 .
[27] J. Huber,et al. Grundlagen der Wahrscheinlichkeitsrechnung für iterative Decodierverfahren , 2002 .
[28] Victor M. Calo,et al. Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .
[29] P. Wriggers. Computational contact mechanics , 2012 .
[30] Volker Gravemeier,et al. Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..
[31] Peter Knabner,et al. Numerik partieller Differentialgleichungen , 2000 .
[32] P. Moin,et al. DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .
[33] Kenneth E. Jansen,et al. A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .
[34] Julian F. Scott,et al. An Introduction to Turbulent Flow , 2000 .
[35] Anath Fischer,et al. New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .
[36] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[37] Y. Notay,et al. Efficient iterative solution of constrained finite element analyses , 1998 .
[38] S. Rebay,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .
[39] Volker John,et al. Simulations of the turbulent channel flow at Reτ = 180 with projection-based finite element variational multiscale methods , 2007 .
[40] Nikolaus A. Adams,et al. An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..
[41] Wulf G. Dettmer,et al. An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .
[42] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[43] Lewis F. Richardson,et al. Weather Prediction by Numerical Process , 1922 .
[44] Kumbakonam R. Rajagopal,et al. An Introduction to the Mechanics of Fluids , 1999 .
[45] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[46] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[47] D. Spalding. A Single Formula for the “Law of the Wall” , 1961 .
[48] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[49] N. Adams,et al. Implicit subgrid-scale modeling by adaptive deconvolution , 2004 .
[50] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[51] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[52] P. Wesseling. Principles of Computational Fluid Dynamics , 2000 .
[53] Assad A. Oberai,et al. A dynamic approach for evaluating parameters in a numerical method , 2005 .
[54] A. Huerta,et al. Arbitrary Lagrangian–Eulerian Methods , 2004 .
[55] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[56] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[57] M. Lesieur,et al. New Trends in Large-Eddy Simulations of Turbulence , 1996 .
[58] A. Oberai,et al. Spectral analysis of the dissipation of the residual-based variational multiscale method , 2010 .
[59] P. Moin,et al. Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .
[60] Rolf Rannacher,et al. On the Numerical Solution of the Incompressible Navier‐Stokes Equations , 1993 .
[61] Giancarlo Alfonsi,et al. Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling , 2009 .
[62] Alexander Linke,et al. Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .
[63] Emanuel Parzen,et al. Stochastic Processes , 1962 .
[64] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[65] Yong Jung Kim. A MATHEMATICAL INTRODUCTION TO FLUID MECHANICS , 2008 .
[66] Chi-Wang Shu,et al. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..
[67] Thomas J. R. Hughes,et al. NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .
[68] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[69] Thomas J. R. Hughes,et al. Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .
[70] Thomas J. R. Hughes,et al. Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .
[71] A. R. Humphries,et al. Dynamical Systems And Numerical Analysis , 1996 .
[72] R. Bird,et al. Constitutive equations for polymeric liquids , 1995 .
[73] G. Böhme,et al. Strömungsmechanik nichtnewtonscher Fluide , 2000 .
[74] R. Peyret. Spectral Methods for Incompressible Viscous Flow , 2002 .
[75] C. Farhat,et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .
[76] P. Hansbo,et al. Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .
[77] Masud Behnia,et al. Reynolds averaged simulation of unsteady separated flow , 2003 .
[78] Christiane Förster,et al. Robust methods for fluid-structure interaction with stabilised finite elements , 2007 .
[79] E. D. Obasaju,et al. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders , 1982, Journal of Fluid Mechanics.
[80] P Jamet,et al. Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements , 1977 .
[81] C F Curtiss,et al. Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[82] Pb Bornemann. Time integration algorithms for the steady states of dissipative non-linear dynamic systems , 2003 .
[83] Erik Burman,et al. Stabilized finite element methods for the generalized Oseen problem , 2007 .
[84] Volker Gravemeier,et al. The variational multiscale method for laminar and turbulent incompressible flow , 2003 .
[85] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[86] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[87] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[88] Ted Belytschko,et al. Quasi-Eulerian Finite Element Formulation for Fluid-Structure Interaction , 1980 .
[89] T. Tezduyar,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .
[90] W. Rodi. Comparison of LES and RANS calculations of the flow around bluff bodies , 1997 .
[91] R. Lahey,et al. Direct numerical simulation of turbulent channel flows using a stabilized finite element method , 2009 .
[92] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[93] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[94] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[95] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .
[96] Rainald Löhner,et al. Improved ALE mesh velocities for moving bodies , 1996 .
[97] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[98] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[99] Clive Fletcher,et al. Computational techniques for fluid dynamics., 2nd Edition , 1991 .
[100] Lilia Krivodonova,et al. High-order accurate implementation of solid wall boundary conditions in curved geometries , 2006 .
[101] Pavel B. Bochev,et al. On stabilized finite element methods for the Stokes problem in the small time step limit , 2007 .
[102] Ramon Codina,et al. The dissipative structure of variational multiscale methods for incompressible flows , 2010 .
[103] D. Wilcox. Turbulence modeling for CFD , 1993 .
[104] Dominik Schötzau,et al. hp -finite element simulations for Stokes flow—stable and stabilized , 1999 .
[105] Tayfun E. Tezduyar,et al. Finite element stabilization parameters computed from element matrices and vectors , 2000 .
[106] K. Jansen,et al. A dynamic Smagorinsky model with dynamic determination of the filter width ratio , 2004 .
[107] Ulrich Küttler,et al. Effiziente Lösungsverfahren für Fluid-Struktur-Interaktions-Probleme , 2009 .
[108] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[109] C. Meneveau,et al. Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .
[110] J. P. Boris,et al. New insights into large eddy simulation , 1992 .
[111] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[112] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[113] M. Gurtin,et al. An introduction to continuum mechanics , 1981 .
[114] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[115] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[116] G. Hulbert,et al. A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .
[117] Pavel B. Bochev,et al. On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..
[118] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[119] J. M. Watt. Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .
[120] Joel H. Ferziger,et al. Computational methods for fluid dynamics , 1996 .
[121] P. Sagaut. Large Eddy Simulation for Incompressible Flows , 2001 .
[122] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[123] A. Kolmogorov. Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[124] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[125] Charles R. Doering. The 3D Navier-Stokes Problem , 2009 .
[126] Volker Gravemeier,et al. The variational multiscale method for laminar and turbulent flow , 2006 .
[127] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[128] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[129] Wolfgang A. Wall,et al. Enhancement of fixed‐grid methods towards complex fluid–structure interaction applications , 2008 .
[130] Peter Deuflhard,et al. Numerische Mathematik. I , 2002 .
[131] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[132] Leonhard Kleiser,et al. Subgrid‐scale energy transfer in the near‐wall region of turbulent flows , 1994 .
[133] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[134] L. Davidson,et al. Large Eddy Simulation of Flow Past a Square Cylinder: Comparison of Different Subgrid Scale Models , 2000 .
[135] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[136] Marek Behr,et al. Stabilized finite element methods for incompressible flows with emphasis on moving boundaries and interfaces , 1992 .
[137] Joel H. Ferziger,et al. Status of Large Eddy Simulation: Results of a Workshop , 1997 .
[138] Thomas J. R. Hughes,et al. Finite element modeling of blood flow in arteries , 1998 .
[139] B. Lee. The effect of turbulence on the surface pressure field of a square prism , 1975, Journal of Fluid Mechanics.
[140] G. Batchelor,et al. An Introduction to Fluid Dynamics , 1968 .
[141] Spencer J. Sherwin,et al. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..
[142] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[143] K. Jansen,et al. On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov–Galerkin stabilization , 2005 .
[144] S. Collis,et al. Monitoring unresolved scales in multiscale turbulence modeling , 2001 .
[145] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[146] Santiago Badia,et al. Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework , 2006, SIAM J. Numer. Anal..
[147] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .