Mining smartphone generated data for user action recognition - Preliminary assessment

[1]  Sashank J. Reddi,et al.  On the Convergence of Adam and Beyond , 2018, ICLR.

[2]  Michel Bierlaire,et al.  Review of transportation mode detection approaches based on smartphone data , 2017 .

[3]  Jia-Ching Wang,et al.  Transportation Mode Detection on Mobile Devices Using Recurrent Nets , 2016, ACM Multimedia.

[4]  Faicel Chamroukhi,et al.  Physical Human Activity Recognition Using Wearable Sensors , 2015, Sensors.

[5]  Roni Mittelman,et al.  Time-series modeling with undecimated fully convolutional neural networks , 2015, ArXiv.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Eiji Hato,et al.  Use of acceleration data for transportation mode prediction , 2015 .

[8]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[9]  Chih-Jen Lin,et al.  Big Data Small Footprint: The Design of A Low-Power Classifier for Detecting Transportation Modes , 2014, Proc. VLDB Endow..

[10]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[11]  Sasu Tarkoma,et al.  Accelerometer-based transportation mode detection on smartphones , 2013, SenSys '13.

[12]  Alex Graves,et al.  Sequence Transduction with Recurrent Neural Networks , 2012, ArXiv.

[13]  Juha Röning,et al.  Recognizing Human Activities User-independently on Smartphones Based on Accelerometer Data , 2012, Int. J. Interact. Multim. Artif. Intell..

[14]  Philip S. Yu,et al.  Transportation mode detection using mobile phones and GIS information , 2011, GIS.

[15]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[16]  Deborah Estrin,et al.  Using mobile phones to determine transportation modes , 2010, TOSN.

[17]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[18]  David W. Mizell,et al.  Using gravity to estimate accelerometer orientation , 2003, Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings..

[19]  Henry A. Kautz,et al.  Inferring High-Level Behavior from Low-Level Sensors , 2003, UbiComp.

[20]  Jürgen Schmidhuber,et al.  Finding temporal structure in music: blues improvisation with LSTM recurrent networks , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[21]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[22]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[23]  C. Lee Giles,et al.  An analysis of noise in recurrent neural networks: convergence and generalization , 1996, IEEE Trans. Neural Networks.

[24]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[25]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[26]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[27]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.