The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment.

[1]  A. Lutterotti,et al.  Antigen-Specific Tolerance by Autologous Myelin Peptide–Coupled Cells: A Phase 1 Trial in Multiple Sclerosis , 2013, Science Translational Medicine.

[2]  Aaron J. Martin,et al.  Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis , 2012, Nature Biotechnology.

[3]  D. Arnold,et al.  Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. , 2012, The New England journal of medicine.

[4]  V. Yong,et al.  Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. , 2012, The American journal of pathology.

[5]  Calliope A. Dendrou,et al.  TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis , 2012, Nature.

[6]  D. Gray,et al.  B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells , 2012, The Journal of experimental medicine.

[7]  R. Sobel,et al.  Laquinimod, a Quinoline-3-Carboxamide, Induces Type II Myeloid Cells That Modulate Central Nervous System Autoimmunity , 2012, PloS one.

[8]  G. Comi,et al.  Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. , 2012, The American journal of pathology.

[9]  F. Barkhof,et al.  Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial , 2011, The Lancet.

[10]  A. Cross,et al.  Rituximab Therapy Reduces Organ-Specific T Cell Responses and Ameliorates Experimental Autoimmune Encephalomyelitis , 2011, PloS one.

[11]  D. Paty,et al.  TNF neutralization in MS: Results of a randomized, placebo-controlled multicenter study , 1999, Neurology.

[12]  Y. Assaf,et al.  Characterization of brain lesions in a mouse model of progressive multiple sclerosis , 2010, Experimental Neurology.

[13]  C. Wegner,et al.  Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis , 2010, Journal of Neuroimmunology.

[14]  O. Griesbeck,et al.  In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. , 2010, Immunity.

[15]  D. Danilenko,et al.  B‐cell activation influences T‐cell polarization and outcome of anti‐CD20 B‐cell depletion in central nervous system autoimmunity , 2010, Annals of neurology.

[16]  Nitin J. Karandikar,et al.  Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis. , 2010, Journal of autoimmunity.

[17]  H. Hartung,et al.  Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? , 2010, Archives of neurology.

[18]  S. Miller,et al.  TGF-β–Induced Myelin Peptide-Specific Regulatory T Cells Mediate Antigen-Specific Suppression of Induction of Experimental Autoimmune Encephalomyelitis , 2010, The Journal of Immunology.

[19]  R. Jacobs,et al.  Murine CXCR3+CD27bright NK cells resemble the human CD56bright NK‐cell population , 2010, European journal of immunology.

[20]  Lawrence Steinman,et al.  T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis , 2010, Nature Medicine.

[21]  P. Calabresi,et al.  Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double‐blind placebo‐controlled multicenter trial , 2009, Annals of neurology.

[22]  B. Engelhardt,et al.  C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE , 2009, Nature Immunology.

[23]  T. Waldmann,et al.  Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. , 2009, Archives of neurology.

[24]  C. A. Foster,et al.  FTY720 Rescue Therapy in the Dark Agouti Rat Model of Experimental Autoimmune Encephalomyelitis: Expression of Central Nervous System Genes and Reversal of Blood‐Brain‐Barrier Damage , 2009, Brain pathology.

[25]  T. Leanderson,et al.  Identification of Human S100A9 as a Novel Target for Treatment of Autoimmune Disease via Binding to Quinoline-3-Carboxamides , 2009, PLoS biology.

[26]  Hans Lassmann,et al.  The relation between inflammation and neurodegeneration in multiple sclerosis brains , 2009, Brain : a journal of neurology.

[27]  T. Mcclanahan,et al.  The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo , 2009, Nature Immunology.

[28]  C. Elson,et al.  Late developmental plasticity in the T helper 17 lineage. , 2009, Immunity.

[29]  S. Amor,et al.  Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments , 2008, Neurobiology of Disease.

[30]  L. Fugger,et al.  Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis , 2008, Nature Network Boston.

[31]  J. Russell,et al.  Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis , 2008, The Journal of experimental medicine.

[32]  K. Selmaj,et al.  Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. , 2008, The New England journal of medicine.

[33]  D. Bourdette,et al.  B-cell depletion with rituximab in relapsing-remitting multiple sclerosis , 2008, Current neurology and neuroscience reports.

[34]  M. Fujimoto,et al.  Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. , 2008, The Journal of clinical investigation.

[35]  C. Constantinescu,et al.  Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study , 2008, The Lancet Neurology.

[36]  Michael Sela,et al.  Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis , 2008, Proceedings of the National Academy of Sciences.

[37]  B. Segal,et al.  IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition , 2008, The Journal of experimental medicine.

[38]  Y. Iwakura,et al.  Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category , 2008, The Journal of experimental medicine.

[39]  J. Correale,et al.  Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis , 2008, Journal of Neuroimmunology.

[40]  J. Goverman,et al.  Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells , 2008, Nature Medicine.

[41]  K. Wucherpfennig,et al.  B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. , 2008, Advances in immunology.

[42]  T. Yamamura,et al.  Th17 Cells and autoimmune encephalomyelitis (EAE/MS). , 2008, Allergology international : official journal of the Japanese Society of Allergology.

[43]  E. Persohn,et al.  Brain Penetration of the Oral Immunomodulatory Drug FTY720 and Its Phosphorylation in the Central Nervous System during Experimental Autoimmune Encephalomyelitis: Consequences for Mode of Action in Multiple Sclerosis , 2007, Journal of Pharmacology and Experimental Therapeutics.

[44]  C. A. Foster,et al.  FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis , 2007, Brain Research Bulletin.

[45]  T. Olsson,et al.  Neurofascin as a novel target for autoantibody-mediated axonal injury , 2007, The Journal of experimental medicine.

[46]  Nathalie Arbour,et al.  Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation , 2007, Nature Medicine.

[47]  J. Rose,et al.  Daclizumab phase II trial in relapsing and remitting multiple sclerosis , 2007, Neurology.

[48]  K. Asadullah,et al.  Dimethylfumarate induces immunosuppression via glutathione depletion and subsequent induction of heme oxygenase 1. , 2007, The Journal of investigative dermatology.

[49]  V. Kuchroo,et al.  Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation , 2007, Nature Medicine.

[50]  S. Miller,et al.  Peripheral Tolerance Induction Using Ethylenecarbodiimide-Fixed APCs Uses both Direct and Indirect Mechanisms of Antigen Presentation for Prevention of Experimental Autoimmune Encephalomyelitis1 , 2007, The Journal of Immunology.

[51]  E. Shevach,et al.  CD4+ CD5+ regulatory T cells render naive CD4+ CD25– T cells anergic and suppressive , 2007, Immunology.

[52]  L. Kappos,et al.  Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF , 2007, Journal of Neurology.

[53]  M. Kumar,et al.  CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis , 2006, Journal of Neuroimmunology.

[54]  R. Gold,et al.  Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration , 2006, Clinical and experimental immunology.

[55]  H. Weiner,et al.  IL-23 Is Increased in Dendritic Cells in Multiple Sclerosis and Down-Regulation of IL-23 by Antisense Oligos Increases Dendritic Cell IL-10 Production , 2006, The Journal of Immunology.

[56]  K. Venken,et al.  Secondary progressive in contrast to relapsing‐remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T‐cell function and FOXP3 expression , 2006, Journal of neuroscience research.

[57]  L. Presta,et al.  Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. , 2006, The Journal of clinical investigation.

[58]  Romana Höftberger,et al.  Transient Axonal Injury in the Absence of Demyelination: A Correlate of Clinical Disease in Acute Experimental Autoimmune Encephalomyelitis , 2006, Acta Neuropathologica.

[59]  B. Birnir,et al.  Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE , 2006, Nature Medicine.

[60]  T. Waldmann,et al.  Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Ransohoff,et al.  Severe Disease, Unaltered Leukocyte Migration, and Reduced IFN-γ Production in CXCR3−/− Mice with Experimental Autoimmune Encephalomyelitis1 , 2006, The Journal of Immunology.

[62]  S. Ziegler,et al.  Cutting Edge: Anti-CD25 Monoclonal Antibody Injection Results in the Functional Inactivation, Not Depletion, of CD4+CD25+ T Regulatory Cells1 , 2006, The Journal of Immunology.

[63]  R. Rudick,et al.  Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients , 2006, Annals of neurology.

[64]  Naděžda Brdičková,et al.  CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. , 2006, Nature.

[65]  M. Sela,et al.  The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Subramaniam Sriram,et al.  Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis , 2005, Annals of neurology.

[67]  M. Koyama,et al.  FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. , 2005, Cellular & molecular immunology.

[68]  P. Krammer,et al.  Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis , 2005, European journal of immunology.

[69]  Hans Lassmann,et al.  Cortical demyelination and diffuse white matter injury in multiple sclerosis. , 2005, Brain : a journal of neurology.

[70]  R. Sobel,et al.  Clonal expansion of IgA-positive plasma cells and axon-reactive antibodies in MS lesions , 2005, Journal of Neuroimmunology.

[71]  J. Strominger,et al.  Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Gold,et al.  Mechanisms of axonal degeneration in EAE—lessons from CNTF and MHC I knockout mice , 2005, Journal of the Neurological Sciences.

[73]  S. Miller,et al.  Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis , 2005, Nature Medicine.

[74]  Y. Blanco,et al.  Autologous haematopoietic-stem-cell transplantation for multiple sclerosis , 2005, The Lancet Neurology.

[75]  C. Polman,et al.  Biological markers in CSF and blood for axonal degeneration in multiple sclerosis , 2005, The Lancet Neurology.

[76]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[77]  H. Weiner Current Issues in the Treatment of Human Diseases by Mucosal Tolerance , 2004, Annals of the New York Academy of Sciences.

[78]  G. Hedlund,et al.  Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-β in Lewis rats , 2004, Journal of Neuroimmunology.

[79]  I. Cohen,et al.  Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. , 2004, Journal of Autoimmunity.

[80]  J. Chun,et al.  Sphingosine 1-phosphate receptor agonists attenuate relapsing–remitting experimental autoimmune encephalitis in SJL mice , 2004, Journal of Neuroimmunology.

[81]  S. Szabo,et al.  Loss of T-bet, But Not STAT1, Prevents the Development of Experimental Autoimmune Encephalomyelitis , 2004, The Journal of experimental medicine.

[82]  A. Melms,et al.  A Structurally Available Encephalitogenic Epitope of Myelin Oligodendrocyte Glycoprotein Specifically Induces a Diversified Pathogenic Autoimmune Response1 , 2004, The Journal of Immunology.

[83]  T. Waldmann,et al.  Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Clare Baecher-Allan,et al.  Loss of Functional Suppression by CD4+CD25+ Regulatory T Cells in Patients with Multiple Sclerosis , 2004, The Journal of experimental medicine.

[85]  B. Serafini,et al.  Detection of Ectopic B‐cell Follicles with Germinal Centers in the Meninges of Patients with Secondary Progressive Multiple Sclerosis , 2004, Brain pathology.

[86]  R. Pedotti,et al.  Anti-MOG autoantibodies in Italian multiple sclerosis patients: specificity, sensitivity and clinical association. , 2004, International immunology.

[87]  G. Hedlund,et al.  Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. , 2004, Journal of medicinal chemistry.

[88]  B. Serafini,et al.  Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis , 2004, Journal of Neuroimmunology.

[89]  R. Proia,et al.  Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1 , 2004, Nature.

[90]  M. Sela,et al.  The autoimmune reactivity to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is potentially pathogenic: Effect of copolymer 1 on MOG-induced disease , 1996, Journal of Neurology.

[91]  B. Becher,et al.  IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. , 2003, The Journal of clinical investigation.

[92]  J. Gommerman,et al.  Lymphotoxin/LIGHT, lymphoid microenvironments and autoimmune disease , 2003, Nature Reviews Immunology.

[93]  H. Ulmer,et al.  Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. , 2003, The New England journal of medicine.

[94]  S. Dhib-jalbut,et al.  Glatiramer acetate (Copaxone) therapy for multiple sclerosis. , 2003, Pharmacology & therapeutics.

[95]  H. Amemiya,et al.  Amelioration of Experimental Autoimmune Encephalomyelitis in Lewis Rats by FTY720 Treatment , 2003, Journal of Pharmacology and Experimental Therapeutics.

[96]  R. Kastelein,et al.  Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain , 2003, Nature.

[97]  G. Faure,et al.  Anti-myelin oligodendrocyte glycoprotein B-cell responses in multiple sclerosis , 2003, Journal of Neuroimmunology.

[98]  A. Gurney,et al.  Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17* , 2003, The Journal of Biological Chemistry.

[99]  T. Nomura,et al.  Control of Regulatory T Cell Development by the Transcription Factor Foxp3 , 2002 .

[100]  David H. Miller,et al.  A controlled trial of natalizumab for relapsing multiple sclerosis. , 2003, The New England journal of medicine.

[101]  David Gray,et al.  B cells regulate autoimmunity by provision of IL-10 , 2002, Nature Immunology.

[102]  Wolfgang Brück,et al.  Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. , 2002, Brain : a journal of neurology.

[103]  G. Hedlund,et al.  The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis , 2002, Journal of Neuroimmunology.

[104]  B. Becher,et al.  Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. , 2002, The Journal of clinical investigation.

[105]  H. Lassmann,et al.  A comparative analysis of B cell‐mediated myelin oligodendrocyte glycoprotein‐experimental autoimmune encephalomyelitis pathogenesis in B cell‐deficient mice reveals an effect on demyelination , 2002, European journal of immunology.

[106]  Jorge R. Oksenberg,et al.  Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis , 2002, Nature Medicine.

[107]  J. Masjuán,et al.  Intrathecal IgM synthesis in neurologic diseases: Relationship with disability in MS , 2002, Neurology.

[108]  R. Swanborg Experimental autoimmune encephalomyelitis in the rat: lessons in T‐cell immunology and autoreactivity , 2001, Immunological reviews.

[109]  J. Goverman,et al.  A Pathogenic Role for Myelin-Specific Cd8+ T Cells in a Model for Multiple Sclerosis , 2001, The Journal of experimental medicine.

[110]  H. Wekerle,et al.  Myelin Antigen-Specific CD8+ T Cells Are Encephalitogenic and Produce Severe Disease in C57BL/6 Mice1 , 2001, The Journal of Immunology.

[111]  H. Weiner,et al.  Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. , 2001, International immunology.

[112]  Kenneth J. Smith,et al.  Electrically active axons degenerate when exposed to nitric oxide , 2001, Annals of neurology.

[113]  Hans Lassmann,et al.  Clonal Expansions of Cd8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction , 2000, The Journal of experimental medicine.

[114]  H. Lassmann,et al.  Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. , 2000, The American journal of pathology.

[115]  C. Janeway,et al.  Relapsing and remitting experimental autoimmune encephalomyelitis in B cell deficient mice. , 2000, Journal of autoimmunity.

[116]  J. Wolinsky,et al.  Linomide in relapsing and secondary progressive MS , 2000, Neurology.

[117]  F. Lublin,et al.  Linomide in relapsing and secondary progressive MS , 2000, Neurology.

[118]  W. Kuziel,et al.  Induction of experimental autoimmune encephalomyelitis in C57BL / 6 mice deficient in either the chemokine macrophage inflammatory protein‐1α or its CCR5 receptor , 2000, European journal of immunology.

[119]  A. Cross,et al.  B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide , 1999, European journal of immunology.

[120]  H. Lassmann,et al.  Axonal Pathology in Multiple Sclerosis. A Historical Note , 1999, Brain pathology.

[121]  A. Compston,et al.  Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis , 1999, Annals of neurology.

[122]  N. Wolf,et al.  Strain variation in autoimmunity: attempted tolerization of DA rats results in the induction of experimental autoimmune encephalomyelitis. , 1999, Journal of immunology.

[123]  H. Lassmann,et al.  Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the "resistant" Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. , 1999, Journal of immunology.

[124]  A. Cross,et al.  Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. , 1999, Journal of immunology.

[125]  P. Kivisäkk,et al.  Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis , 1999, Multiple sclerosis.

[126]  J. Burns,et al.  Isolation of myelin basic protein–specific T cells predominantly from the memory T‐cell compartment in multiple sclerosis , 1999, Annals of neurology.

[127]  J. Lafaille,et al.  Regulatory Cd4 Ϩ T Cells Expressing Endogenous T Cell Receptor Chains Protect Myelin Basic Protein–specific Transgenic Mice from Spontaneous Autoimmune Encephalomyelitis , 1998 .

[128]  G. Ebers,et al.  Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis , 1998, The Lancet.

[129]  Ockenfels,et al.  The antipsoriatic agent dimethylfumarate immunomodulates T‐cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network , 1998, The British journal of dermatology.

[130]  H. Weiner,et al.  Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. , 1998, The Journal of clinical investigation.

[131]  J. Bluestone,et al.  The functional significance of epitope spreading and its regulation by co‐stimulatory molecules , 1998, Immunological reviews.

[132]  J. Pollard,et al.  Challenging Cytokine Redundancy: Inflammatory Cell Movement and Clinical Course of Experimental Autoimmune Encephalomyelitis Are Normal in Lymphotoxin-deficient, but Not Tumor Necrosis Factor–deficient, Mice , 1998, The Journal of experimental medicine.

[133]  S. Miller,et al.  Effect of disease stage on clinical outcome after syngeneic bone marrow transplantation for relapsing experimental autoimmune encephalomyelitis. , 1998, Blood.

[134]  Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. , 1998, Lancet.

[135]  G. Wong,et al.  TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination , 1998, Nature Medicine.

[136]  L. Steinman,et al.  CD4+ T-cell subsets in autoimmunity. , 1997, Current opinion in immunology.

[137]  F. Shi,et al.  Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-β mRNA , 1997, Journal of Neuroimmunology.

[138]  K. Smith,et al.  Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. , 1997, Brain : a journal of neurology.

[139]  J. Strominger,et al.  Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. , 1997, The Journal of clinical investigation.

[140]  F. Barkhof,et al.  Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: Results of a randomized, double-blind, placebo-controlled MR-monitored phase II trial , 1997, Neurology.

[141]  S. Miller,et al.  Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis: a comparison between oral and peripheral tolerance. , 1997, Journal of immunology.

[142]  V. Pistoia,et al.  Production of cytokines by human B cells in health and disease. , 1997, Immunology today.

[143]  K. Frei,et al.  Tumor Necrosis Factor (cid:2) and Lymphotoxin (cid:2) Are Not Required for Induction of Acute Experimental Autoimmune Encephalomyelitis , 2002 .

[144]  C. Polman,et al.  Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-gamma secreting TH1 cells in humans. , 1997, The Journal of clinical investigation.

[145]  R. Kinkel,et al.  Diversity and plasticity of self recognition during the development of multiple sclerosis. , 1997, The Journal of clinical investigation.

[146]  Charles A. Janeway,et al.  Experimental Autoimmune Encephalomyelitis Induction in Genetically B Cell–deficient Mice , 1996, The Journal of experimental medicine.

[147]  C. Whitacre,et al.  Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. , 1996, Journal of immunology.

[148]  W. Cowden,et al.  IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. , 1996, Journal of immunology.

[149]  M. Sela,et al.  Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses , 1996, Journal of Neuroimmunology.

[150]  A. Compston,et al.  Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. , 1996, Brain : a journal of neurology.

[151]  B. Trapp,et al.  Interferon-β inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis , 1996, Journal of Neuroimmunology.

[152]  H. McFarland,et al.  Intravenous antigen adrmnistration as a therapy for autoimmune demyelinating disease , 1996, Annals of neurology.

[153]  B. Trapp,et al.  Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. , 1996, Journal of neuroimmunology.

[154]  H. Lassmann,et al.  The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat , 1995, Journal of Neuroimmunology.

[155]  H. Neumann,et al.  Induction of MHC class I genes in neurons. , 1995, Science.

[156]  J. W. Rose,et al.  Copolymer 1 reduces relapse rate and improves disability in relapsing‐remitting multiple sclerosis , 1995, Neurology.

[157]  S. Miller,et al.  Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis , 1995, The Journal of experimental medicine.

[158]  Jeffrey A. Cohen,et al.  Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. , 1995, Neurology.

[159]  H. Weiner,et al.  Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. , 1994, Science.

[160]  Susumu Tonegawa,et al.  High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice , 1994, Cell.

[161]  S. Miller,et al.  Epitope and functional specificity of peripheral tolerance induction in experimental autoimmune encephalomyelitis in adult Lewis rats. , 1994, Journal of immunology.

[162]  J. Goverman,et al.  T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. , 1994, Science.

[163]  A. Ben-nun,et al.  Inhibition of acute, experimental autoimmune encephalomyelitis by the synthetic immunomodulator linomide , 1993, Annals of neurology.

[164]  D. Karussis,et al.  Treatment of chronic-relapsing experimental autoimmune encephalomyelitis with the synthetic immunomodulator linomide (quinoline-3-carboxamide). , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[165]  I. Catz,et al.  Autoantibodies to myelin basic protein within multiple sclerosis central nervous system tissue , 1993, Journal of the Neurological Sciences.

[166]  M. de Carli,et al.  Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. , 1993, Journal of immunology.

[167]  A. Gaur,et al.  Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. , 1992, Science.

[168]  J. Merrill,et al.  Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[169]  H. Weiner,et al.  Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. V. Hierarchy of suppression by myelin basic protein from different species , 1992, Journal of Neuroimmunology.

[170]  E. Sercarz,et al.  Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen , 1992, Nature.

[171]  T. Mak,et al.  Less Mortality but More Relapses in Experimental Allergic Encephalomyelitis in CD8-/- Mice , 1992, Science.

[172]  Hong Jiang,et al.  Role of CD8+ T Cells in Murine Experimental Allergic Encephalomyelitis , 1992, Science.

[173]  A. Ben-nun,et al.  Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. , 1992, Journal of immunology.

[174]  F. Sánchez‐Madrid,et al.  Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin , 1992, Nature.

[175]  A. Cross,et al.  Anti—tumor necrosis factor therapy abrogates autoimmune demyelination , 1991, Annals of neurology.

[176]  C. Orosz,et al.  Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. , 1991, Journal of immunology.

[177]  R. Clark,et al.  An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis , 1990, The Journal of experimental medicine.

[178]  M. Hemler VLA proteins in the integrin family: structures, functions, and their role on leukocytes. , 1990, Annual review of immunology.

[179]  A Hirano,et al.  INCREASED DIAMETER OF DEMYELINATED AXONS IN CHRONIC MULTIPLE SCLEROSIS OF THE SPINAL CORD , 1988, Neuropathology and applied neurobiology.

[180]  C. Whitacre,et al.  Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. , 1988, Cellular immunology.

[181]  H. Lassmann,et al.  Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. , 1988, The American journal of pathology.

[182]  M. Esiri,et al.  T cell subsets in multiple sclerosis. Gradients at plaque borders and differences in nonplaque regions. , 1987, Brain : a journal of neurology.

[183]  H. Weiner,et al.  Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments , 1987, Journal of Neuroimmunology.

[184]  H. Kwaan,et al.  Role of the clotting system in the pathogenesis of neuroimmunologic disease. , 1987, Federation proceedings.

[185]  J. Antel,et al.  Defective suppressor cell function mediated by T8+ cell lines from patients with progressive multiple sclerosis. , 1986, Journal of immunology.

[186]  R. Coffman,et al.  Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. , 1986, Journal of immunology.

[187]  M. Waldor,et al.  Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. , 1985, Science.

[188]  M. Esiri,et al.  Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis , 1983, Journal of the Neurological Sciences.

[189]  L. Steinman,et al.  Administration of myelin basic protein-coupled spleen cells prevents experimental allergic encephalitis. , 1983, Cellular immunology.

[190]  L. Steinman,et al.  Identification of T cell subsets and B lymphocytes in mouse brain experimental allergic encephalitis lesions. , 1982, Journal of immunology.

[191]  S. Miller,et al.  The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells , 1979, The Journal of experimental medicine.

[192]  A. Meshorer,et al.  Suppression of experimental allergic encephalomyelitis in Rhesus monkeys by a synthetic basic copolymer. , 1974, Clinical immunology and immunopathology.

[193]  A. Meshorer,et al.  Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide , 1971, European journal of immunology.

[194]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.

[195]  Kabat Ea,et al.  A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. , 1950 .

[196]  D. Freedman,et al.  A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. , 1950, The American journal of the medical sciences.

[197]  P. K. Olitsky,et al.  EXPERIMENTAL DISSEMINATED ENCEPHALOMYELITIS IN WHITE MICE , 1949, The Journal of experimental medicine.