Controlled Grain Growth for High Performance Nanoparticle-Based Kesterite Solar Cells

Large-grain absorber formation through selenization techniques is a promising route for high performance chalcogenide solar cells. Understanding and subsequently controlling such grain growth is essential in improving absorber quality and developing absorbers with unique optoelectronic and morphological properties. We explain the essential role of liquid selenium in the grain growth of Cu2ZnSnSe4 (CZTSe) absorbers from Cu2ZnSnS4 nanoparticles by proposing a liquid-assisted grain growth mechanism. Through the use of a multizone rapid-thermal-processing furnace, control of liquid Se delivery to the film and the Se(g) atmosphere during processing is shown to result in novel absorbers with tunable properties. Additionally, the processing parameters necessary for high quality CZTSe absorbers, the role of nanoparticle properties, and the role of alkali metal dopants in the liquid-assisted growth mechanism are shown. Ultimately, record nanoparticle-based device performance of 9.3% is achieved for selenized CZTSe...

[1]  Yun Sun,et al.  Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency. , 2013, ACS applied materials & interfaces.

[2]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[3]  G. Dennler,et al.  8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions. , 2014, The journal of physical chemistry letters.

[4]  Charlotte Platzer-Björkman,et al.  A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .

[5]  C. Handwerker,et al.  A Versatile Solution Route to Efficient Cu2ZnSn(S,Se)4 Thin-Film Solar Cells , 2015 .

[6]  Randall M. German,et al.  Review: liquid phase sintering , 2009 .

[7]  N. Kohara,et al.  Growth of CuInSe_2 crystals in Cu-rich Cu–In–Se thin films , 1997 .

[8]  I. Repins,et al.  Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells , 2013 .

[9]  Yang Yang,et al.  Growth mechanisms of co‐evaporated kesterite: a comparison of Cu‐rich and Zn‐rich composition paths , 2014 .

[10]  A. Tiwari,et al.  11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit , 2015 .

[11]  G. Müller,et al.  Kinetics of CIS-formation studied in situ by thin film calorimetry , 2000 .

[12]  K. Dick,et al.  Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .

[13]  Ki‐Hyun Kim,et al.  Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles , 2009 .

[14]  P. Parilla,et al.  Cu-In-Ga-Se nanoparticle colloids as spray deposition precursors for Cu(In, Ga)Se2 solar cell materials , 1998 .

[15]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[16]  L. Kranz,et al.  Sodium Assisted Sintering of Chalcogenides and Its Application to Solution Processed Cu2ZnSn(S,Se)4 Thin Film Solar Cells , 2014 .

[17]  Wolfgang Riedl,et al.  Advanced Stacked Elemental Layer Process for Cu(InGa)Se 2 Thin Film Photovoltaic Devices , 1996 .

[18]  T. Unold,et al.  Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. , 2013, Physical chemistry chemical physics : PCCP.

[19]  Rakesh Agrawal,et al.  Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2ZnSnSe4 , 2016 .

[20]  K. Fezzaa,et al.  One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure , 1996 .

[21]  Rakesh Agrawal,et al.  Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks , 2015 .

[22]  E. Aydil,et al.  Microstructure Evolution During Selenization of Cu2ZnSnS4 Colloidal Nanocrystal Coatings , 2016 .

[23]  Hans Zogg,et al.  CIS and CIGS layers from selenized nanoparticle precursors , 2003 .

[24]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[25]  L. Kranz,et al.  Liquid‐selenium‐enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers , 2015 .

[26]  Jan Sendler,et al.  The band gap of Cu2ZnSnSe4: Effect of order-disorder , 2014 .

[27]  Rakesh Agrawal,et al.  9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .

[28]  H. Hillhouse,et al.  Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent , 2011 .

[29]  K. Choudhury,et al.  Studies of the fine-grain sub-layer in the printed CZTSSe photovoltaic devices , 2014 .

[30]  D. Mitzi,et al.  The Role of Sodium as a Surfactant and Suppressor of Non‐Radiative Recombination at Internal Surfaces in Cu2ZnSnS4 , 2015 .

[31]  Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium , 2011, 1110.1677.

[32]  Rakesh Agrawal,et al.  The role of interparticle heterogeneities in the selenization pathway of Cu-Zn-Sn-S nanoparticle thin films: A real-time study , 2015 .

[33]  Rommel Noufi,et al.  Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells , 2006 .

[34]  D. Abou‐Ras,et al.  Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .

[35]  Rommel Noufi,et al.  Structure, chemistry, and growth mechanisms of photovoltaic quality thin‐film Cu(In,Ga)Se2 grown from a mixed‐phase precursor , 1995 .

[36]  Y. Romanyuk,et al.  Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na‐containing solutions in DMSO , 2015 .

[37]  Igor V. Veryovkin,et al.  Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films , 2014 .

[38]  Rakesh Agrawal,et al.  Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1−x)4 and Cu2Zn(SnyGe1−y)(SxSe1−x)4 , 2014 .

[39]  R. Agrawal,et al.  Grain growth enhancement of selenide CIGSe nanoparticles to densified films using copper selenides , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[40]  R. Klenk,et al.  A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation , 1993 .

[41]  Rakesh Agrawal,et al.  Compositional Inhomogeneity of Multinary Semiconductor Nanoparticles: A Case Study of Cu2ZnSnS4 , 2014 .

[42]  E. Aydil,et al.  Microstructure evolution and crystal growth in Cu2ZnSnS 4 thin films formed by annealing colloidal nanocrystal coatings , 2014 .

[43]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[44]  D. Kuo,et al.  Reactive sintering of Cu2ZnSnSe4 pellets at 600 °C with double sintering aids of Sb2S3 and Te , 2013 .

[45]  Qingwen Tian,et al.  Significantly Enhancing Grain Growth in Cu2ZnSn(S,Se)(4) Absorber Layers by Insetting Sb2S3, CuSbS2, and NaSb5S8 Thin Films , 2015 .

[46]  R. Agrawal,et al.  Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying , 2016 .