The stabilized V -cycle method

Algebraic multilevel iterations methods are preconditioning algorithms, to solve elliptic type partial differential equations by iteration which can give both a robust and optimal, or nearly optimal, convergence rate and require per iteration step an arithmetic complexity proportional to the degree of freedoms in the problem. In addition, each iteration step can, in general, be implemented efficiently on massively parallel computers. To stabilize the condition number in the V-cycle version of the method one can use polynomial stabilization or inner solutions at certain, properly chosen levels in the multilevel hierarchy of meshes. The latter is considered here.

[1]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[2]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[3]  Owe Axelsson,et al.  Asymptotic work estimates for AMLI methods , 1991 .

[4]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[5]  Yu. A. Kuznetsov,et al.  Multilevel preconditioning for perturbed finite element matrices , 1997 .

[6]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[7]  O. Axelsson Iterative solution methods , 1995 .

[8]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[9]  Wagdi G. Habashi,et al.  Solution techniques for large-scale CFD problems , 1995 .

[10]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[11]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .

[12]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[13]  Owe Axelsson,et al.  A survey of multilevel preconditioned iterative methods , 1989 .

[14]  Owe Axelsson,et al.  An algebraic framework for hierarchical basis functions multilevel methods or the search for “optimal” preconditioners , 1990 .

[15]  Y. Kuznetsov,et al.  Algebraic multigrid domain decomposition methods , 1989 .

[16]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[17]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[18]  Panayot S. Vassilevski,et al.  Multilevel Preconditioning Matrices and Multigrid V-Cycle Methods , 1989 .

[19]  Owe Axelsson The method of diagonal compensation of reduced matrix entries and multilevel iteration , 1991 .

[20]  L. J. Hayes,et al.  Iterative Methods for Large Linear Systems , 1989 .

[21]  O. Axelsson A general incomplete block-matrix factorization method , 1986 .

[22]  N. Bakhvalov On the convergence of a relaxation method with natural constraints on the elliptic operator , 1966 .

[23]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[24]  Yu. A. Kuznetsov Multigrid domain decomposition methods for elliptic problems , 1989 .

[25]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[26]  Owe Axelsson,et al.  Algebraic multilevel iteration method for Stieltjes matrices , 1994, Numer. Linear Algebra Appl..

[27]  Victor Eijkhout,et al.  The Nested Recursive Two-Level Factorization Method for Nine-Point Difference Matrices , 1991, SIAM J. Sci. Comput..

[28]  O. Axelsson,et al.  On some versions of incomplete block-matrix factorization iterative methods , 1984 .

[29]  O. Axelsson A multilevel solution method for nine-point difference approximations , 1989 .

[30]  O. Axelsson On multigrid methods of the two-level type , 1982 .

[31]  Owe Axelsson,et al.  Scalable algorithms for the solution of Navier's equations of elasticity , 1995 .