Solutions of Systems of Algebraic Equations and Linear Maps on Residue Class Rings

Abstract In this paper, we present new mathematical results and several new algorithm for solving a system of algebraic equations algebraically. We find that many ideal-theoretical arguments for the problem can be translated into their counterparts in the theory of linear maps. And by this translation, we succeed in giving a new description for the U-resultant and forms of solutions of systems straightforwardly. New algorithms proposed here apply algorithms of linear algebra to avoid repeated computations of Grobner bases under lexicographic order, and they require computation of a Grobner basis, under arbitrary order, only once in principle. The new algorithms improve the efficiency of computation.

[1]  Hidetsune Kobayashi,et al.  On Radical Zero-Dimensional Ideals , 1989, J. Symb. Comput..

[2]  Tetsuro Fujise,et al.  Solving Systems of Algebraic Equations by a General Elimination Method , 1988, J. Symb. Comput..

[3]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[4]  T. Willmore Algebraic Geometry , 1973, Nature.

[5]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[6]  Oscar Zariski,et al.  Commutative Algebra II , 1976 .

[7]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[8]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[9]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[10]  G. A. Dirac,et al.  Moderne Algebra. I , 1951 .

[11]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[12]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[13]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[14]  A. Seidenberg Constructions in algebra , 1974 .

[15]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[16]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[17]  Kazuhiro Yokoyama,et al.  Computing Primitive Elements of Extension Fields , 1989, J. Symb. Comput..

[18]  Wolfgang Trinks,et al.  Über B. Buchbergers verfahren, systeme algebraischer gleichungen zu lösen , 1978 .