A monolithic, finite element-based strategy for solving fluid structure interaction problems coupled with electrostatics

[1]  Xiao-Sheng Zhang,et al.  Highly Sensitive Temperature Sensor Based on Coupled-Beam AlN-on-Si MEMS Resonators Operating in Out-of-Plane Flexural Vibration Modes , 2022, Research.

[2]  Sheng-Shian Li,et al.  Piezoelectric MEMS Resonators: A Review , 2020, IEEE Sensors Journal.

[3]  Shijiazhuang Summary of Research Status and Application of MEMS Accelerometers , 2018 .

[4]  Ivan Plander,et al.  MEMS technology in optical switching , 2017, 2017 IEEE 14th International Scientific Conference on Informatics.

[5]  K. D. Patil,et al.  A hybrid finite element strategy for the simulation of MEMS structures , 2016 .

[6]  Guo Zhanshe,et al.  Research development of silicon MEMS gyroscopes: a review , 2015 .

[7]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[8]  C. S. Jog,et al.  Conservation Properties of the Trapezoidal Rule in Linear Time Domain Analysis of Acoustics and Structures , 2014, 1401.0991.

[9]  K. Volokh On Electromechanical Coupling in Elastomers , 2012 .

[10]  C. Jog,et al.  A monolithic strategy for fluid–structure interaction problems , 2011 .

[11]  C. S. Jog,et al.  Improved hybrid elements for structural analysis , 2010 .

[12]  V. Ziegler,et al.  Challenges and opportunities for RF-MEMS in aeronautics and space - The EADS perspective , 2010, 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[13]  C. S. Jog,et al.  Energy-momentum conserving algorithm for nonlinear transient analysis within the framework of hybrid elements , 2009 .

[14]  Cs Jog,et al.  Shortcomings of discontinuous‐pressure finite element methods on a class of transient problems , 2009 .

[15]  Ole Sigmund,et al.  A monolithic approach for topology optimization of electrostatically actuated devices , 2008 .

[16]  Ashok Kumar Pandey,et al.  Analytical, Numerical, And Experimental Studies Of Fluid Damping In MEMS Devices , 2007 .

[17]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[18]  Suhas S. Mohite,et al.  Squeeze Film Effects in MEMS Devices , 2007 .

[19]  Narayana R Aluru,et al.  Coupling of hierarchical fluid models with electrostatic and mechanical models for the dynamic analysis of MEMS , 2006 .

[20]  P. A. Voltairas,et al.  A theoretical study of the hyperelasticity of electro‐gels , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Anshul Gupta,et al.  Recent advances in direct methods for solving unsymmetric sparse systems of linear equations , 2002, TOMS.

[22]  Farrokh Ayazi,et al.  Micromachined inertial sensors , 1998, Proc. IEEE.

[23]  J. C. Nadeau,et al.  Invariant Tensor-to-Matrix Mappings for Evaluation of Tensorial Expressions , 1998 .

[24]  S. Senturia,et al.  Pull-in time dynamics as a measure of absolute pressure , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[25]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[26]  R. Pratap,et al.  Hybrid Elements for Modelling Squeeze Film Effects Coupled with Structural Interactions in Vibratory MEMS Devices , 2015 .

[27]  J. Murthy,et al.  Application of Immersed Boundary Method to Fluid, Structure and Electrostatics Interaction in MEMS , 2011 .

[28]  Theodore H. H. Pian,et al.  Relations between incompatible displacement model and hybrid stress model , 1986 .

[29]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .