Hierarchical multi-label framework for robust face recognition

In this paper, we propose a patch based face recognition framework. First, a face image is iteratively divided into multi-level patches and assigned hierarchical labels. Second, local classifiers are built to learn the local prediction of each patch. Third, the hierarchical relationships defined between local patches are used to obtain the global prediction of each patch. We develop three ways to learn the global prediction: majority voting, ℓ1-regularized weighting, and decision rule. Last, the global predictions of different levels are combined as the final prediction. Experimental results on different face recognition tasks demonstrate the effectiveness of our method.

[1]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[4]  A. Martínez,et al.  The AR face databasae , 1998 .

[5]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[6]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Ioannis A. Kakadiaris,et al.  UHDB 11 Database for 3 D-2 D Face Recognition , 2014 .

[8]  Tomaso A. Poggio,et al.  Face recognition with support vector machines: global versus component-based approach , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[10]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[12]  Jian Yang,et al.  Robust sparse coding for face recognition , 2011, CVPR 2011.

[13]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[14]  Shuhuan Zhao,et al.  Occluded Face Recognition Based on Double Layers Module Sparsity Difference , 2014 .

[15]  Giorgio Valentini,et al.  True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Kwan-Yee Kenneth Wong,et al.  A Multi-level Supporting Scheme for Face Recognition under Partial Occlusions and Disguise , 2010, ACCV.

[17]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Ioannis A. Kakadiaris,et al.  UHDB11 Database for 3D-2D Face Recognition , 2013, PSIVT.

[20]  Ioannis A. Kakadiaris,et al.  Minimizing Illumination Differences for 3D to 2D Face Recognition Using Lighting Maps , 2014, IEEE Transactions on Cybernetics.

[21]  Wen Gao,et al.  Hierarchical Ensemble of Global and Local Classifiers for Face Recognition , 2009, IEEE Trans. Image Process..

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Ioannis A. Kakadiaris,et al.  Fully Associative Ensemble Learning for Hierarchical Multi-Label Classification , 2014, BMVC.

[24]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[25]  Simon C. K. Shiu,et al.  Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization , 2012, ECCV.

[26]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Fabrizio Sebastiani,et al.  On the Selection of Negative Examples for Hierarchical Text Categorization , 2007 .

[28]  Sang Uk Lee,et al.  Occlusion Invariant Face Recognition Using Selective LNMF Basis Images , 2006, ACCV.

[29]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jun Luo,et al.  Person-Specific SIFT Features for Face Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[31]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[32]  Yulian Zhu,et al.  Subpattern-based principle component analysis , 2004, Pattern Recognit..

[33]  Muhammad Sharif,et al.  A survey: face recognition techniques under partial occlusion , 2014, Int. Arab J. Inf. Technol..

[34]  Andrea Lagorio,et al.  On the Use of SIFT Features for Face Authentication , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[35]  Josef Kittler,et al.  Component-based LDA face description for image retrieval and MPEG-7 standardisation , 2005, Image Vis. Comput..