Metal–organic frameworks meet scalable and sustainable synthesis

Over the past decade, metal–organic frameworks (MOFs) have emerged as enabling materials for a wide variety of sustainable technologies, leading to their recent commercialisation. However, whereas the commercialisation of MOFs and a large fraction of their potential applications are directed towards roles as “green materials” for a sustainable future, this is dependent on the availability of synthetic and manufacturing procedures mindful of sustainability and environmental impact. While the need for clean and sustainable methodologies has been embraced by organic synthesis and catalysis more than a decade ago, such development has been significantly slower in inorganic and metal–organic synthesis. At the same time, the environmental challenges of metal–organic chemistry are unique, as they combine the environmental impacts of organic chemistry with hazards associated with metal ions, their salts, and complexes. The recent and ongoing commercialisation of MOFs is signalling an urgent need to address these challenges. In this review we highlight recently developed evaluative criteria for green, sustainable, and industrially-acceptable metal–organic chemistry, along with six areas of recent experimental and theoretical progress that are relevant for developing cleaner, sustainable MOF synthesis: (1) using safer and/or biocompatible building blocks, (2) reducing energy input (3) using water or near-critical water as reaction media, (4) strategies to avoid bulk solvent, (5) continuous manufacturing and (6) theoretical prediction and design of MOF performance for given applications.

[1]  Lijia Liu,et al.  A chlorine-free protocol for processing germanium , 2017, Science Advances.

[2]  Jeffrey R. Long,et al.  Techno-economic Analysis of Metal–Organic Frameworks for Hydrogen and Natural Gas Storage , 2017 .

[3]  Mohamad Hmadeh,et al.  Synthesis, size and structural evolution of metal–organic framework-199 via a reaction–diffusion process at room temperature , 2017 .

[4]  T. Friščić,et al.  Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber , 2017, Molecules.

[5]  Tomislav Friščić,et al.  Mechanochemistry: A Force of Synthesis , 2016, ACS central science.

[6]  Tom K Woo,et al.  Materials design by evolutionary optimization of functional groups in metal-organic frameworks , 2016, Science Advances.

[7]  Henrietta W. Langmi,et al.  Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications , 2016 .

[8]  Michael J. Katz,et al.  Dihydrolevoglucosenone (Cyrene) As a Green Alternative to N,N-Dimethylformamide (DMF) in MOF Synthesis , 2016 .

[9]  I. Imaz,et al.  A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads , 2016 .

[10]  Tom K. Woo,et al.  Quantitative Structure–Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification , 2016 .

[11]  S. Krivovichev,et al.  Minerals with metal-organic framework structures , 2016, Science Advances.

[12]  Edward Lester,et al.  Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors , 2016 .

[13]  D. Crawford,et al.  Recent Developments in Mechanochemical Materials Synthesis by Extrusion , 2016, Advanced materials.

[14]  Athanassios D. Katsenis,et al.  In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. , 2016, Journal of the American Chemical Society.

[15]  Nicolaas A. Vermeulen,et al.  CD-MOF: A Versatile Separation Medium. , 2016, Journal of the American Chemical Society.

[16]  T. Hanusa,et al.  Advances in organometallic synthesis with mechanochemical methods. , 2016, Dalton transactions.

[17]  Matthew R. Hill,et al.  Scalable simultaneous activation and separation of metal-organic frameworks , 2016 .

[18]  J. Hupp,et al.  Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks† †Electronic supplementary information (ESI) available: Selected PXRD, FTIR-ATR, BET, TGA, SEM and DLS data. See DOI: 10.1039/c5cc08972g Click here for additional data file. , 2015, Chemical communications.

[19]  Phil de Luna,et al.  A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification , 2015, Science Advances.

[20]  M. Zaworotko,et al.  Direct Air Capture of CO2 by Physisorbent Materials. , 2015, Angewandte Chemie.

[21]  T. Friščić,et al.  Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists. , 2015, The journal of physical chemistry letters.

[22]  B. Peter McGrail,et al.  Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures , 2015 .

[23]  Mingyan Wu,et al.  A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions , 2015, Nature Communications.

[24]  N. Stock,et al.  Flow-synthesis of carboxylate and phosphonate based metal-organic frameworks under non-solvothermal reaction conditions. , 2015, Dalton transactions.

[25]  Matthew R. Hill,et al.  Continuous flow production of metal-organic frameworks , 2015 .

[26]  Athanassios D. Katsenis,et al.  In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework , 2015, Nature Communications.

[27]  I. Díaz,et al.  Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources , 2015 .

[28]  Di Wu,et al.  Thermodynamics of metal-organic frameworks , 2015 .

[29]  T. Friščić,et al.  A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. , 2015, Chemical communications.

[30]  Jun Lin,et al.  Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging , 2015, Scientific Reports.

[31]  Tony McNally,et al.  Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03217a Click here for additional data file. , 2015, Chemical science.

[32]  T. Friščić,et al.  Quantitative in situ and real-time monitoring of mechanochemical reactions. , 2014, Faraday discussions.

[33]  G. Beobide,et al.  Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs. microwave heating† , 2014 .

[34]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[35]  K. Matsuyama,et al.  Supercritical carbon dioxide-assisted drug loading and release from biocompatible porous metal-organic frameworks. , 2014, Journal of materials chemistry. B.

[36]  Diego A. Gómez-Gualdrón,et al.  Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane , 2014 .

[37]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[38]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[39]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[40]  M. Poliakoff,et al.  Synthesis of metal–organic frameworks by continuous flow , 2014 .

[41]  T. Friščić,et al.  Carbon dioxide sensitivity of zeolitic imidazolate frameworks. , 2014, Angewandte Chemie.

[42]  Jing Li,et al.  Luminescent metal-organic frameworks as explosive sensors. , 2014, Dalton transactions.

[43]  Yaodong Jiang,et al.  Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. , 2014, Journal of hazardous materials.

[44]  J. Hupp,et al.  Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. , 2014, Angewandte Chemie.

[45]  B. Moyer,et al.  Challenges to achievement of metal sustainability in our high-tech society. , 2014, Chemical Society reviews.

[46]  Yan-Ping He,et al.  Nanoporous cobalt(II) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification. , 2014, Journal of the American Chemical Society.

[47]  Chris Orvig,et al.  Metallodrugs in medicinal inorganic chemistry. , 2014, Chemical reviews.

[48]  Randall Q. Snurr,et al.  Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. , 2014, Journal of materials chemistry. B.

[49]  T. Friščić,et al.  Mimicking mineral neogenesis for the clean synthesis of metal–organic materials from mineral feedstocks: coordination polymers, MOFs and metal oxide separation , 2014 .

[50]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[51]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[52]  K. Müller‐Buschbaum,et al.  Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. , 2013, Chemical Society reviews.

[53]  Z. Tang,et al.  Multifunctional Nanoparticle@MOF Core–Shell Nanostructures , 2013, Advanced materials.

[54]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[55]  T. Do,et al.  Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides , 2013 .

[56]  J. Fettinger,et al.  Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[57]  Krista S. Walton,et al.  MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2 , 2013 .

[58]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[59]  J. F. Stoddart,et al.  Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. , 2013, Journal of the American Chemical Society.

[60]  David Grosso,et al.  Green scalable aerosol synthesis of porous metal-organic frameworks. , 2013, Chemical communications.

[61]  Randall Q. Snurr,et al.  Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks , 2013 .

[62]  Inhar Imaz,et al.  A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. , 2013, Nature chemistry.

[63]  A. Cheetham,et al.  Thermochemistry of zeolitic imidazolate frameworks of varying porosity. , 2013, Journal of the American Chemical Society.

[64]  G. Wiederrecht,et al.  Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. , 2013, Journal of the American Chemical Society.

[65]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[66]  Pradip B. Sarawade,et al.  Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity , 2013 .

[67]  Z. Su,et al.  Metal-organic frameworks as potential drug delivery systems , 2013, Expert opinion on drug delivery.

[68]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[69]  M. Eckert-Maksić,et al.  Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs , 2012 .

[70]  K. Harris,et al.  Efficient, Scalable, and Solvent-free Mechanochemical Synthesis of the OLED Material Alq3 (q = 8-Hydroxyquinolinate) , 2012 .

[71]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[72]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[73]  G. Beobide,et al.  A direct reaction approach for the synthesis of zeolitic imidazolate frameworks: template and temperature mediated control on network topology and crystal size. , 2012, Chemical communications.

[74]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[75]  U. Müller,et al.  The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications , 2012 .

[76]  M. Cliffe,et al.  Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials , 2012 .

[77]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[78]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[79]  Peter J Dunn,et al.  The importance of green chemistry in process research and development. , 2012, Chemical Society reviews.

[80]  Roger A Sheldon,et al.  Fundamentals of green chemistry: efficiency in reaction design. , 2012, Chemical Society reviews.

[81]  Ronald A. Smaldone,et al.  Nanoporous carbohydrate metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[82]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[83]  Ulrich Müller,et al.  Industrial Outlook on Zeolites and Metal Organic Frameworks , 2012 .

[84]  A. J. Blake,et al.  Near-critical water, a cleaner solvent for the synthesis of a metal–organic framework , 2012 .

[85]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[86]  Bong Jin Hong,et al.  Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. , 2011, Journal of the American Chemical Society.

[87]  A. Cheetham,et al.  Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[88]  T. Friščić,et al.  Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. , 2011, Angewandte Chemie.

[89]  Jie‐Peng Zhang,et al.  Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. , 2011, Chemical communications.

[90]  David Farrusseng,et al.  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage , 2011 .

[91]  M. P. Suh,et al.  A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. , 2011, Chemistry.

[92]  Philip G. Jessop,et al.  Searching for green solvents , 2011 .

[93]  Michael J Zaworotko,et al.  2:1 cocrystals of homochiral and achiral amino acid zwitterions with Li+ salts: water-stable zeolitic and diamondoid metal-organic materials. , 2011, Journal of the American Chemical Society.

[94]  C. Serre,et al.  High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating. , 2011, Chemistry.

[95]  A. Navrotsky,et al.  MOF-5: enthalpy of formation and energy landscape of porous materials. , 2011, Journal of the American Chemical Society.

[96]  Fiona C. Strobridge,et al.  A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding , 2011 .

[97]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[98]  Dan Zhao,et al.  Tuning the topology and functionality of metal-organic frameworks by ligand design. , 2011, Accounts of chemical research.

[99]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[100]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[101]  B. Han,et al.  Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst , 2011 .

[102]  A. Cheetham,et al.  Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. , 2010, Angewandte Chemie.

[103]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[104]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[105]  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[106]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[107]  T. Friščić New opportunities for materials synthesis using mechanochemistry , 2010 .

[108]  F. Emmerling,et al.  Mechanochemical Synthesis of Metal-Organic Frameworks : A Fast and FacileApproach towardQuantitativeYields andHighSpecific SurfaceAreas , 2010 .

[109]  Fiona C. Strobridge,et al.  Mechanochemistry of magnesium oxide revisited: facile derivatisation of pharmaceuticals using coordination and supramolecular chemistry. , 2010, Chemical communications.

[110]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[111]  Christian Serre,et al.  Biodegradable therapeutic MOFs for the delivery of bioactive molecules. , 2010, Chemical communications.

[112]  G. Seifert,et al.  Hydrogen Adsorption Sites in Zeolite Imidazolate Frameworks ZIF-8 and ZIF-11 , 2010 .

[113]  A. Abdel-Fattah,et al.  Storage and separation applications of nanoporous metal–organic frameworks , 2010 .

[114]  N. Stock High-throughput investigations employing solvothermal syntheses , 2010 .

[115]  Wenbin Lin,et al.  Metal-organic frameworks as potential drug carriers. , 2010, Current opinion in chemical biology.

[116]  A. Slawin,et al.  The use of ionic liquids in the synthesis of zinc imidazolate frameworks. , 2010, Dalton transactions.

[117]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[118]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[119]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[120]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[121]  Dan Zhao,et al.  Potential applications of metal-organic frameworks , 2009 .

[122]  S. Lofland,et al.  Amino acid based MOFs: synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales. , 2009, Inorganic chemistry.

[123]  D. Braga,et al.  Drug-containing coordination and hydrogen bonding networks obtained mechanochemically , 2009 .

[124]  David Pennington,et al.  Recent developments in Life Cycle Assessment. , 2009, Journal of environmental management.

[125]  M. Zaworotko Metal-organic materials: A reversible step forward. , 2009, Nature chemistry.

[126]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[127]  A. Cheetham,et al.  Structural and chemical complexity in multicomponent inorganic–organic framework materials , 2009 .

[128]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[129]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[130]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[131]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[132]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[133]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[134]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[135]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[136]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[137]  L. Fábián,et al.  Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG) , 2009 .

[138]  S. Childs,et al.  The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome , 2009 .

[139]  Omar K Farha,et al.  Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. , 2009, Journal of the American Chemical Society.

[140]  A. Orpen,et al.  Solid state synthesis of coordination compounds from basic metal salts , 2008 .

[141]  G. Seifert,et al.  Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. , 2008, The journal of physical chemistry. B.

[142]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[143]  D. Braga,et al.  Simple and quantitative mechanochemical preparation of the first zinc and copper complexes of the neuroleptic drug gabapentin , 2008 .

[144]  Stijn Bruers,et al.  Exergy: its potential and limitations in environmental science and technology. , 2008, Environmental science & technology.

[145]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[146]  Christian Capello,et al.  What is a green solvent? A comprehensive framework for the environmental assessment of solvents , 2007 .

[147]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[148]  Anne Pichon,et al.  Solvent-free synthesis of metal complexes. , 2007, Chemical Society reviews.

[149]  H. Chun,et al.  Discovery, synthesis, and characterization of an isomeric coordination polymer with pillared kagome net topology. , 2007, Inorganic chemistry.

[150]  G. Day,et al.  Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. , 2007, Nature Materials.

[151]  Dominique Millet,et al.  Does the potential of the use of LCA match the design team needs , 2007 .

[152]  L. Brammer,et al.  Solvent hydrolysis leads to an unusual Cu(II) metal–organic framework , 2006 .

[153]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[154]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[155]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[156]  Kimoon Kim,et al.  Three-dimensional metal-organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. , 2004, Chemical communications.

[157]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[158]  Steven B. Hawthorne,et al.  Extraction of organic pollutants from environmental solids with sub- and supercritical water , 1994 .

[159]  J. Aqvist,et al.  A new method for predicting binding affinity in computer-aided drug design. , 1994, Protein engineering.

[160]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.