Bayesian methods for time‐varying state and parameter estimation in induction machines

Summary This paper addresses the problem of nonlinear time-varying state and parameter estimation of induction machines (IMs) on the basis of a third-order electrical model. The objectives of this paper are threefold. The first objective is to propose the use of an improved particle filter (IPF) with better proposal distribution for nonlinear and non-Gaussian state and parameter estimation. The second objective is to extend the state and parameter estimation techniques (i.e., extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and IPF) to better handle nonlinear and non-Gaussian processes without a priori state information, by utilizing a time-varying assumption of statistical parameters. In this case, the state vector to be estimated at any instant is assumed to follow a Gaussian model, where the expectation and the covariance matrix are both random. The third objective is to compare the performances of EKF, UKF, PF, and IPF in estimating the states of the power process model representing the IM (i.e, the rotor speed, the rotor flux, the stator flux, the rotor resistance, and the magnetizing inductance) and their abilities to estimate some of the key system parameters, which are needed to define the IM process model. The results show that the IPF provides a significant improvement over the PF because, unlike the PF, which depends on the choice of sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of the sampling distribution, which also accounts for the observed data. This conclusion is also supported by the experimental results. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Gerardo Espinosa-Pérez,et al.  Global observability analysis of sensorless induction motors , 2004, Autom..

[2]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Emil Levi,et al.  A speed estimator for high performance sensorless control of induction motors in the field weakening region , 2002 .

[4]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[5]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[6]  Haitham Abu-Rub,et al.  Speed observer system for advanced sensorless control of induction motor , 2003 .

[7]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[8]  Haitham Abu-Rub,et al.  Speed and Load Torque Observer Application in High-Speed Train Electric Drive , 2010, IEEE Transactions on Industrial Electronics.

[9]  H. Kubota,et al.  DSP-based speed adaptive flux observer of induction motor , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[10]  Hazem Nounou,et al.  States and parameters estimation in induction motor using Bayesian techniques , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[11]  Joachim Holtz,et al.  The representation of AC machine dynamics by complex signal flow graphs , 1995, IEEE Trans. Ind. Electron..

[12]  Z. Krzeminski Observer of induction motor speed based on exact disturbance model , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[13]  Leon M. Tolbert,et al.  A differential-algebraic approach to speed estimation in an induction motor , 2006, IEEE Transactions on Automatic Control.

[14]  Sumeetpal S. Singh,et al.  Novel particle filter methods for recursive and batch maximum likelihood parameter estimation in general states space models , 2005 .

[15]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[16]  Tadashi Fukao,et al.  Robust speed identification for speed sensorless vector control of induction motors , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[17]  Patrick Pérez,et al.  Variational inference for visual tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  Hui Zhang,et al.  Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models , 2012, Comput. Geosci..

[19]  Fredrik Gustafsson,et al.  Some Relations Between Extended and Unscented Kalman Filters , 2012, IEEE Transactions on Signal Processing.

[20]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[21]  Jennifer Stephan,et al.  Real-time estimation of the parameters and fluxes of induction motors , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[22]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[23]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[24]  P. Kundur,et al.  An induction motor parameter estimation method , 2001 .

[25]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[26]  Seung-Ki Sul,et al.  Speed sensorless vector control of induction motor using extended Kalman filter , 1994 .

[27]  C. Richard,et al.  A nonlinear estimation for target tracking in wireless sensor networks using quantized variational filtering , 2009, 2009 3rd International Conference on Signals, Circuits and Systems (SCS).

[28]  L. Ben-Brahim,et al.  Speed control of induction motor without rotational transducers , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[29]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[30]  Adrian Corduneanu,et al.  Variational Bayesian Model Selection for Mixture Distributions , 2001 .

[31]  Longya Xu,et al.  An adaptive sliding mode observer for induction motor sensorless speed control , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[32]  S. L. Ho,et al.  Speed estimation of an induction motor drive using an optimized extended Kalman filter , 2002, IEEE Trans. Ind. Electron..

[33]  David J. Atkinson,et al.  Observers for induction motor state and parameter estimation , 1991 .

[34]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[35]  M. Mansouri,et al.  Modeling of nonlinear biological phenomena modeled by S-systems using Bayesian method , 2012, 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences.

[36]  Hazem N. Nounou,et al.  State estimation and application to induction machines - A comparative study , 2014, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14).

[37]  Majdi Mansouri,et al.  Modeling and prediction of nonlinear environmental system using Bayesian methods , 2013 .

[38]  Kyo-Beum Lee,et al.  Speed and Flux Estimation for an Induction Motor , 2002 .

[39]  John N. Chiasson,et al.  High-speed parameter estimation of stepper motors , 1993, IEEE Trans. Control. Syst. Technol..

[40]  Sirish L. Shah,et al.  A comparison of simultaneous state and parameter estimation schemes for a continuous fermentor reactor , 2010 .

[41]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[42]  Pablo A. Iglesias,et al.  Optimal Noise Filtering in the Chemotactic Response of Escherichia coli , 2006, PLoS Comput. Biol..

[43]  January,et al.  A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes , 2005 .

[44]  H.A. Toliyat,et al.  Artificial-neural-network-based sensorless nonlinear control of induction motors , 2005, IEEE Transactions on Energy Conversion.

[45]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[46]  Hazem Nounou,et al.  Estimation of nonlinear control parameters in induction machine using particle filtering , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[47]  W. Tian,et al.  Particle filter for sensor fusion in a land vehicle navigation system , 2005 .

[48]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[49]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[50]  Hichem Snoussi,et al.  Adaptive quantized target tracking in wireless sensor networks , 2011, Wirel. Networks.

[51]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[52]  Leon M. Tolbert,et al.  An online rotor time constant estimator for induction machine , 2007, IEEE International Conference on Electric Machines and Drives, 2005..