The evolution of primordial black holes and their final observable spins

Primordial black holes in the mass range of ground-based gravitational-wave detectors can comprise a significant fraction of the dark matter. Mass and spin measurements from coalescences can be used to distinguish between an astrophysical or a primordial origin of the binary black holes. In standard scenarios the spin of primordial black holes is very small at formation. However, the mass and spin can evolve through the cosmic history due to accretion. We show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial black holes with masses below 𝒪(30)M· are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift z∼10. The dependence of the mass and spin distributions on the redshift can be probed with future detectors such as the Einstein Telescope. The mass and spin evolution affect the gravitational waveform parameters, in particular the distribution of the final mass and spin of the merger remnant, and that of the effective spin of the binary. We argue that, compared to the astrophysical-formation scenario, a primordial origin of black hole binaries might better explain the spin distribution of merger events detected by LIGO-Virgo, in which the effective spin parameter of the binary is compatible to zero except possibly for few high-mass events. Upcoming results from LIGO-Virgo third observation run might reinforce or weaken these predictions.

[1]  P. Pani,et al.  Constraints on primordial black holes: The importance of accretion , 2020, Physical Review D.

[2]  K. Kohri,et al.  Erratum: Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations [Phys. Rev. D 99 , 103531 (2019)] , 2020 .

[3]  C. Haster,et al.  Source properties of the lowest signal-to-noise-ratio binary black hole detections , 2020, 2003.04513.

[4]  M. Safarzadeh The Branching Ratio of LIGO Binary Black Holes , 2020, The Astrophysical Journal.

[5]  You Wu Merger history of primordial black-hole binaries , 2020, Physical Review D.

[6]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[7]  J. Peacock,et al.  Primordial black hole merger rates: distributions for multiple LIGO observables , 2019, Journal of Cosmology and Astroparticle Physics.

[8]  H. Veermäe,et al.  Lower bound on the primordial black hole merger rate , 2019, Physical Review D.

[9]  A. Gruzinov,et al.  Spin of primordial black holes , 2019, Journal of Cosmology and Astroparticle Physics.

[10]  D. Inman,et al.  Early structure formation in primordial black hole cosmologies , 2019, Physical Review D.

[11]  M. Raidal,et al.  Small-scale structure of primordial black hole dark matter and its implications for accretion , 2019, Physical Review D.

[12]  A. Riotto,et al.  Primordial black holes from broad spectra: abundance and clustering , 2019, Journal of Cosmology and Astroparticle Physics.

[13]  S. Profumo,et al.  Unraveling the origin of black holes from effective spin measurements with LIGO-Virgo , 2019, Journal of Cosmology and Astroparticle Physics.

[14]  K. Nakao,et al.  Erratum: Spins of primordial black holes formed in the matter-dominated phase of the Universe [Phys. Rev. D 96 , 083517 (2017)] , 2019, Physical Review D.

[15]  K. Kohri,et al.  Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations , 2019, Physical Review D.

[16]  V. Desjacques,et al.  The initial spin probability distribution of primordial black holes , 2019, Journal of Cosmology and Astroparticle Physics.

[17]  B. Zackay,et al.  Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run , 2019, Physical Review D.

[18]  C. Byrnes,et al.  WIMPs and stellar-mass primordial black holes are incompatible , 2019, Physical Review D.

[19]  R. Cai,et al.  Effects of the merger history on the merger rate density of primordial black hole binaries , 2019, The European Physical Journal C.

[20]  M. Raidal,et al.  Formation and evolution of primordial black hole binaries in the early universe , 2018, Journal of Cosmology and Astroparticle Physics.

[21]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[22]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[23]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[24]  R. O’Shaughnessy,et al.  Spin orientations of merging black holes formed from the evolution of stellar binaries , 2018, Physical Review D.

[25]  Yacine Ali-Haïmoud Correlation Function of High-Threshold Regions and Application to the Initial Small-Scale Clustering of Primordial Black Holes. , 2018, Physical review letters.

[26]  Takahiro Tanaka,et al.  Erratum: Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914 [Phys. Rev. Lett. 117, 061101 (2016)]. , 2018, Physical review letters.

[27]  P. Serpico,et al.  On the merger rate of primordial black holes: effects of nearest neighbours distribution and clustering , 2018, Journal of Cosmology and Astroparticle Physics.

[28]  V. Desjacques,et al.  Spatial clustering of primordial black holes , 2018, Physical Review D.

[29]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[30]  D. Holz,et al.  Using Spin to Understand the Formation of LIGO and Virgo’s Black Holes , 2017, 1709.07896.

[31]  C. Herdeiro,et al.  Can black hole superradiance be induced by galactic plasmas , 2017, 1701.02034.

[32]  Jhu,et al.  Merger rate of primordial black-hole binaries , 2017, 1709.06576.

[33]  K. Chatziioannou,et al.  Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences. , 2017, Physical review letters.

[34]  V. Poulin,et al.  CMB bounds on disk-accreting massive primordial black holes , 2017, 1707.04206.

[35]  K. Nakao,et al.  Spins of primordial black holes formed in the matter-dominated phase of the Universe , 2017, 1707.03595.

[36]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[37]  A. Kusenko,et al.  Primordial black holes from scalar field evolution in the early universe , 2017, 1706.09003.

[38]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[39]  M. Raidal,et al.  Primordial black hole constraints for extended mass functions , 2017, 1705.05567.

[40]  Davide Gerosa,et al.  Are merging black holes born from stellar collapse or previous mergers , 2017, 1703.06223.

[41]  J. García-Bellido,et al.  Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves , 2017, 1702.08275.

[42]  M. Fishbach,et al.  Are LIGO's Black Holes Made from Smaller Black Holes? , 2017, 1703.06869.

[43]  C. Herdeiro,et al.  Radionovas: can black hole superradiance power Fast Radio Bursts? , 2017 .

[44]  M. Kamionkowski,et al.  Cosmic microwave background limits on accreting primordial black holes , 2016, 1612.05644.

[45]  Sai,et al.  Solving puzzles of GW150914 by primordial black holes , 2016, 1611.00541.

[46]  Bing Zhang,et al.  Cosmological evolution of primordial black holes , 2016, 1702.08069.

[47]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[48]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[49]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[50]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[51]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[52]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[53]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[54]  V. Cardoso,et al.  Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics , 2015 .

[55]  V. Cardoso,et al.  Black holes as particle detectors: evolution of superradiant instabilities , 2014, 1411.0686.

[56]  V. Cardoso,et al.  Can environmental effects spoil precision gravitational-wave astrophysics? , 2014, 1404.7149.

[57]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[58]  A. Loeb,et al.  Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background , 2013, 1307.5176.

[59]  N. W. Taylor,et al.  Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or antialigned spins , 2013, 1305.5991.

[60]  Richard O'Shaughnessy,et al.  Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: A diagnostic of compact-binary formation , 2013, 1302.4442.

[61]  E. Barausse The evolution of massive black holes and their spins in their galactic hosts , 2012, 1201.5888.

[62]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[63]  E. Berti,et al.  Final spins from the merger of precessing binary black holes , 2010, 1002.2643.

[64]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[65]  P. Marronetti,et al.  Final mass and spin of black-hole mergers , 2008, 0807.2985.

[66]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[67]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[68]  L. Rezzolla,et al.  PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.

[69]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[70]  Richard H. Price,et al.  Black Holes , 1997 .

[71]  M. Ricotti Bondi Accretion in the Early Universe , 2007, 0706.0864.

[72]  J. Ostriker,et al.  Growth of Structure Seeded by Primordial Black Holes , 2006, astro-ph/0608642.

[73]  M. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE DISTRIBUTION AND COSMIC EVOLUTION OF MASSIVE BLACK HOLE SPINS , 2004 .

[74]  S. Shapiro,et al.  Black Hole Spin Evolution , 2003, astro-ph/0310886.

[75]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[76]  Takahiro Tanaka,et al.  Black hole binary formation in the expanding universe: Three body problem approximation , 1998, astro-ph/9807018.

[77]  J. Yokoyama Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse , 1998, gr-qc/9804041.

[78]  J. Niemeyer,et al.  Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes , 1997, astro-ph/9709072.

[79]  P. Ivanov Nonlinear metric perturbations and production of primordial black holes , 1997, astro-ph/9708224.

[80]  K. Thorne,et al.  Gravitational Waves from Coalescing Black Hole MACHO Binaries , 1997, astro-ph/9708060.

[81]  Density perturbations and black hole formation in hybrid inflation. , 1996, Physical review. D, Particles and fields.

[82]  Ivanov,et al.  Inflation and primordial black holes as dark matter. , 1994, Physical review. D, Particles and fields.

[83]  Stuart Louis Shapiro,et al.  Dynamical evolution of dense clusters of compact stars , 1989 .

[84]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[85]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[86]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[87]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .

[88]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[89]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[90]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[91]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[92]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .