Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

Abstract The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

[1]  Carlos S. Kubrusly,et al.  Distributed parameter system indentification A survey , 1977 .

[2]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[3]  P. Kitanidis,et al.  An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling , 1984 .

[4]  Steven M. Gorelick,et al.  Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge , 1989 .

[5]  G. Dagan,et al.  Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 2. Case study , 1987 .

[6]  Allan L. Gutjahr,et al.  Stochastic analysis of spatial variability in two‐dimensional steady groundwater flow assuming stationary and nonstationary heads , 1982 .

[7]  William W.-G. Yeh,et al.  A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis , 1992 .

[8]  J. P. Delhomme,et al.  Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach , 1979 .

[9]  Peter W. Bush,et al.  Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama , 1988 .

[10]  Dennis McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 1. Unconditional moments , 1989 .

[11]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[12]  P. Kitanidis,et al.  A numerical spectral approach for the derivation of piezometric head covariance functions , 1989 .

[13]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[14]  Peter K. Kitanidis,et al.  Comment on “Stochastic Modeling of Groundwater Flow by Unconditional and Conditional Probabilities: The Inverse Problem” by Gedeon Dagan , 1986 .

[15]  E. Wood,et al.  A distributed parameter approach for evaluating the accuracy of groundwater model predictions: 1. Theory , 1988 .

[16]  Yoram Rubin,et al.  Stochastic identification of recharge, transmissivity, and storativity in aquifer transient flow: A quasi‐steady approach , 1988 .

[17]  Peter K. Kitanidis,et al.  Comparison of Gaussian Conditional Mean and Kriging Estimation in the Geostatistical Solution of the Inverse Problem , 1985 .

[18]  J. C. Ramírez,et al.  Estimation of aquifer parameters under transient and steady-state conditions , 1984 .

[19]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[20]  Dennis McLaughlin,et al.  A distributed parameter approach for evaluating the accuracy of groundwater model predictions: 2. Application to groundwater flow , 1988 .

[21]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[22]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[23]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[24]  C. Tibbals Hydrology of the Floridan aquifer system in east-central Florida , 1990 .

[25]  Michael D. Greenberg,et al.  Foundations of Applied Mathematics , 1978 .

[26]  G. Dagan Stochastic Modeling of Groundwater Flow by Unconditional and Conditional Probabilities: The Inverse Problem , 1985 .

[27]  D. McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments , 1989 .

[28]  Allan L. Gutjahr,et al.  Stochastic analysis of spatial variability in subsurface flows: 1. Comparison of one‐ and three‐dimensional flows , 1978 .

[29]  Gedeon Dagan,et al.  A Note on Higher‐Order Corrections of the Head Covariances in Steady Aquifer Flow , 1985 .

[30]  S. P. Neuman,et al.  Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona , 1982 .

[31]  Dennis McLaughlin,et al.  A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis , 1991 .

[32]  Dennis McLaughlin,et al.  A stochastic model of solute transport in groundwater: Application to the Borden, Ontario, Tracer Test , 1991 .

[33]  Roussos Dimitrakopoulos,et al.  Geostatistical modeling of transmissibility for 2D reservoir studies , 1990 .