k-Gap Interval Graphs

We initiate the study of a new parameterization of graph problems. In a multiple interval representation of a graph, each vertex is associated to at least one interval of the real line, with an edge between two vertices if and only if an interval associated to one vertex has a nonempty intersection with an interval associated to the other vertex. A graph on n vertices is a k-gap interval graph if it has a multiple interval representation with at most n+k intervals in total. In order to scale up the nice algorithmic properties of interval graphs (where k = 0), we parameterize graph problems by k, and find FPT algorithms for several problems, including Feedback Vertex Set, Dominating Set, Independent Set, Clique, Clique Cover, and Multiple Interval Transversal. The Coloring problem turns out to be W[1]-hard and we design an XP algorithm for the recognition problem.

[1]  Paul Erdös,et al.  A note on the interval number of a graph , 1985, Discret. Math..

[2]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[3]  Guillaume Fertin,et al.  Extracting constrained 2-interval subsets in 2-interval sets , 2007, Theor. Comput. Sci..

[4]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[5]  Yong Zhang,et al.  Parameterized Complexity in Multiple-Interval Graphs: Partition, Separation, Irredundancy , 2011, COCOON.

[6]  Noga Alon,et al.  Piercing d -Intervals , 1998, Discret. Comput. Geom..

[7]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[8]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[9]  Alexandr V. Kostochka,et al.  Total interval number for graphs with bounded degree , 1997 .

[10]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[11]  Yong Zhang,et al.  Parameterized Complexity in Multiple-Interval Graphs: Domination , 2011, IPEC.

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[14]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[15]  Gerard J. Chang,et al.  Total interval numbers of complete r-partite graphs , 2002, Discret. Appl. Math..

[16]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[17]  Douglas B. West A short proof of the degree bound for interval number , 1989, Discret. Math..

[18]  Douglas B. West,et al.  The total interval number of a graph, I: Fundamental classes , 1993, Discret. Math..

[19]  Moshe Lewenstein,et al.  Optimization problems in multiple-interval graphs , 2007, SODA '07.

[20]  Douglas B. West,et al.  The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.

[21]  Stéphane Vialette Two-Interval Pattern Problems , 2008, Encyclopedia of Algorithms.

[22]  Stéphane Vialette,et al.  On the computational complexity of 2-interval pattern matching problems , 2004, Theor. Comput. Sci..

[23]  Christian Bessiere,et al.  The Parameterized Complexity of Global Constraints , 2008, AAAI.

[24]  Refael Hassin,et al.  Rounding to an integral program , 2005, Oper. Res. Lett..

[25]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[26]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[27]  Arundhati Raychaudhuri The Total Interval Number of a Tree and the Hamiltonian Completion Number of its Line Graph , 1995, Inf. Process. Lett..

[28]  Jan Arne Telle,et al.  Boolean-Width of Graphs , 2009, IWPEC.

[29]  Philippe Gambette,et al.  On Restrictions of Balanced 2-Interval Graphs , 2007, WG.

[30]  R. Ravi,et al.  Nonoverlapping Local Alignments (weighted Independent Sets of Axis-parallel Rectangles) , 1996, Discret. Appl. Math..

[31]  Tomás Kaiser Transversals of d-Intervals , 1997, Discret. Comput. Geom..

[32]  H. Shachnai,et al.  Scheduling Split Intervals Reuven Bar-Yehuda yz Magn us M. Halld orsson x Joseph (Se) Naor y , 2005 .

[33]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[34]  Stefan Kratsch,et al.  Data Reduction for Graph Coloring Problems , 2011, FCT.

[35]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[36]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[37]  Thomas Andreae On an extremal problem concerning the interval number of a graph , 1986, Discret. Appl. Math..

[38]  Paul A. Catlin,et al.  Supereulerian graphs: A survey , 1992, J. Graph Theory.

[39]  Martin Vatshelle,et al.  Graph classes with structured neighborhoods and algorithmic applications , 2011, Theor. Comput. Sci..

[40]  Gad M. Landau,et al.  Approximating the 2-interval pattern problem , 2005, Theor. Comput. Sci..

[41]  Dror Rawitz,et al.  Using fractional primal-dual to schedule split intervals with demands , 2006, Discret. Optim..

[42]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[43]  Stefan Szeider,et al.  Kernels for Global Constraints , 2011, IJCAI.

[44]  Dániel Marx,et al.  Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..

[45]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[46]  Hao Yuan,et al.  Improved algorithms for largest cardinality 2-interval pattern problem , 2007, J. Comb. Optim..

[47]  Douglas B. West,et al.  The Total Interval Number of a Graph II: Trees and Complexity , 1996, SIAM J. Discret. Math..

[48]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[49]  Moshe Lewenstein,et al.  Dotted interval graphs and high throughput genotyping , 2005, SODA '05.

[50]  József Balogh,et al.  On the interval number of special graphs , 2004, J. Graph Theory.

[51]  Martin Aigner,et al.  The total interval number of a graph , 1989, J. Comb. Theory, Ser. B.

[52]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[53]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[54]  Gábor Tardos Transversals of 2-intervals, a topological approach , 1995, Comb..

[55]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[56]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[57]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..