Structure revealing techniques based on parallel coordinates plot

Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.

[1]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[2]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[3]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[4]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[5]  Helwig Hauser,et al.  Angular brushing of extended parallel coordinates , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[6]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[7]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[9]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Michael I. Jordan,et al.  Learning Spectral Clustering , 2003, NIPS.

[11]  Edward J. Wegman,et al.  High Dimensional Clustering Using Parallel Coordinates and the Grand Tour , 1997 .

[12]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[13]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Klaus Mueller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Illustrative Parallel Coordinates , 2022 .

[15]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[16]  Matej Novotny,et al.  Visually Effective Information Visualization of Large Data , 2004 .

[17]  Michael Friendly,et al.  Effect ordering for data displays , 2003, Comput. Stat. Data Anal..

[18]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[19]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[20]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[21]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[22]  Haim Levkowitz,et al.  Uncovering Clusters in Crowded Parallel Coordinates Visualizations , 2004, IEEE Symposium on Information Visualization.

[23]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .

[24]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Matthew D. Cooper,et al.  Depth Cues and Density in Temporal Parallel Coordinates , 2007, EuroVis.

[26]  Matthew O. Ward,et al.  Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces , 2000, IEEE Trans. Vis. Comput. Graph..

[27]  M. Friendly Corrgrams , 2002 .

[28]  Marina Meila,et al.  Comparing Clusterings by the Variation of Information , 2003, COLT.