Application of Capacitive Deionisation in water desalination: A review

Abstract This manuscript spans over 180 years of ideas, discoveries, inventions, breakthroughs and research in Capacitive Deionisation (CDI) and Membrane CDI (MCDI) desalination. Starting with the first discovery of the dissociation of ions in solution under an electric field by M. Faraday (1833), through the pioneering work of carbon aerogel flow through capacitors by J. Farmer's group (1996) at Lawrence Livermore National Laboratory (LLNL), to the utilization of novel graphene and carbon nanotube (CNT) materials as electrodes, the CDI and MCDI technologies are progressively making its path to the desalination industry. Through this review various deficiencies of this technology have been identified, first and far most was the need for low cost and efficient electrode materials. The review identified that a low cost and high efficiency electrode capable of processing high salinity (seawater) stream still does not exists and is considered important if the technology is to make it to the industry. Furthermore, the lack of long term reliability, operation demonstrations and experience meant that information about scaling and fouling are rather scarce. Taking a step further, no comprehensive environmental assessment such as Life Cycle Assessment (LCA) or Environmental Impact Assessment (EIA) has been performed yet.

[1]  Chi-Woo Lee,et al.  Desalination of a thermal power plant wastewater by membrane capacitive deionization , 2006 .

[2]  Won Il Cho,et al.  Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes , 2005 .

[3]  Linda Zou,et al.  Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes , 2010 .

[4]  Yongsoo Jeong,et al.  Nanoporous activated carbon cloth for capacitive deionization of aqueous solution , 2006 .

[5]  Jae-Hwan Choi,et al.  Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI) , 2013 .

[6]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[7]  Marian Turek,et al.  Cost effective electrodialytic seawater desalination , 2003 .

[8]  Dc Kitty Nijmeijer,et al.  Power generation using profiled membranes in reverse electrodialysis , 2011 .

[9]  Chao Pan,et al.  Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization , 2012 .

[10]  P. M. Biesheuvel,et al.  Membrane capacitive deionization , 2010 .

[11]  Michael Faraday XX . Experimental researches in electricity.-Eighth series , 1834, Philosophical Transactions of the Royal Society of London.

[12]  P. M. Biesheuvel,et al.  Dynamic Adsorption/Desorption Process Model for Capacitive Deionization , 2009 .

[13]  Mohammed H. I. Dore,et al.  Forecasting the economic costs of desalination technology , 2005 .

[14]  Costas Tsouris,et al.  Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. , 2002, Journal of colloid and interface science.

[15]  Marek Bryjak,et al.  Effect of electrode thickness variation on operation of capacitive deionization , 2012 .

[16]  Linda Zou,et al.  Using mesoporous carbon electrodes for brackish water desalination. , 2008, Water research.

[17]  Linda Zou,et al.  A study of the capacitive deionisation performance under various operational conditions. , 2012, Journal of hazardous materials.

[18]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  F. Krüger,et al.  Über die Gestalt der idealen Elektrokapillarkurve , 1913 .

[20]  John R. Miller,et al.  Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications , 2008 .

[21]  Frederick C. Strong,et al.  Faraday's laws in one equation , 1961 .

[22]  Hee Cheon No,et al.  Development of a two-dimensional coupled-implicit numerical tool for analysis of the CDI operation , 2012 .

[23]  Linda Zou,et al.  Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation , 2012 .

[24]  Joydeep Dutta,et al.  Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach , 2012 .

[25]  Jae-Hwan Choi,et al.  Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process , 2010 .

[26]  Linda Zou,et al.  Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts. , 2013, Journal of hazardous materials.

[27]  Doron Aurbach,et al.  Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion , 2013 .

[28]  Jae-Hwan Choi,et al.  Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process , 2010 .

[29]  Jae-Hwan Choi,et al.  Removal of acetic acid and sulfuric acid from biomass hydrolyzate using a lime addition–capacitive deionization (CDI) hybrid process , 2012 .

[30]  Linda Zou,et al.  Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology , 2011 .

[31]  Jae-Hwan Choi,et al.  Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application , 2010 .

[32]  Linda Zou,et al.  Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination , 2011 .

[33]  Ji-Young Choi,et al.  A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder , 2010 .

[34]  Feiyu Kang,et al.  Relation between the charge efficiency of activated carbon fiber and its desalination performance. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[35]  Matthias Wessling,et al.  Transport limitations in ion exchange membranes at low salt concentrations , 2010 .

[36]  Joseph C. Farmer,et al.  The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water , 1995 .

[37]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[38]  P. Długołęcki,et al.  Energy recovery in membrane capacitive deionization. , 2013, Environmental science & technology.

[39]  Jae-Hwan Choi,et al.  Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. , 2012, Water research.

[40]  Y. W. Chen,et al.  Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes , 2006 .

[41]  P. M. Biesheuvel,et al.  Time-dependent ion selectivity in capacitive charging of porous electrodes. , 2012, Journal of colloid and interface science.

[42]  S. K. Thampy,et al.  The effect of conducting spacers on transport properties of ion-exchange membranes in electrodriven separation , 2001 .

[43]  Jae-Hwan Choi,et al.  Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane , 2010 .

[44]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[45]  J. Post,et al.  Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. , 2008, Environmental science & technology.

[46]  Zhuo Sun,et al.  A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization , 2011 .

[47]  Michael Faraday,et al.  V. Experimental researches in electricity.—Sixth series , 1834, Philosophical Transactions of the Royal Society of London.

[48]  Walter A. Zeltner,et al.  Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide , 2009 .

[49]  P. M. Biesheuvel,et al.  Optimization of salt adsorption rate in membrane capacitive deionization. , 2013, Water research.

[50]  Wei Liu,et al.  Preparation and electrosorption desalination performance of activated carbon electrode with titania , 2011 .

[51]  Mohammad Alkuran Power supply considerations for capacitive deionization water purification systems , 2009 .

[52]  Zhiyong Ren,et al.  Microbial desalination cell with capacitive adsorption for ion migration control. , 2012, Bioresource technology.

[53]  Peng Liang,et al.  Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. , 2012, Bioresource technology.

[54]  Jae-Hwan Choi,et al.  Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder , 2011 .

[55]  Gang Wang,et al.  Highly mesoporous activated carbon electrode for capacitive deionization , 2013 .

[56]  Marc A. Anderson,et al.  Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? , 2010 .

[57]  Chi-Woo Lee,et al.  Development of a carbon sheet electrode for electrosorption desalination , 2007 .

[58]  Tae-Jin Kim,et al.  A study on modeling and simulation of capacitive deionization process for wastewater treatment , 2010 .

[59]  Jochen Fricke,et al.  Carbon Aerogels for Electrochemical Double Layer Capacitors , 2003 .

[60]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[61]  Zhuo Sun,et al.  Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization , 2012 .

[62]  T. Hwang,et al.  Synthesis and electrical properties of NaSS–MAA–MMA cation exchange membranes for membrane capacitive deionization (MCDI) , 2012 .

[63]  Matthias Wessling,et al.  Ion conductive spacers for increased power generation in reverse electrodialysis , 2010 .

[64]  W. Fawcett,et al.  Analysis of thermodynamic data for the adsorption of organic molecules at polarizable interfaces with consideration of medium effects , 1988 .

[65]  Jae-Hwan Choi,et al.  The production of ultrapure water by membrane capacitive deionization (MCDI) technology , 2012 .

[66]  Linda Zou,et al.  Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization , 2012 .

[67]  Pei Xu,et al.  Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. , 2008, Water research.

[68]  Doron Aurbach,et al.  Limitation of Charge Efficiency in Capacitive Deionization I. On the Behavior of Single Activated Carbon , 2009 .

[69]  Chen-Chi M. Ma,et al.  Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization , 2013 .

[70]  Doron Aurbach,et al.  Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes , 2010 .

[71]  Congjie Gao,et al.  Ion conductive spacers for the energy-saving production of the tartaric acid in bipolar membrane electrodialysis , 2012 .

[72]  G. Quincke,et al.  Ueber die Fortführung materieller Theilchen durch strömende Elektricität , 1861 .

[73]  Zhuo Sun,et al.  Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes , 2009 .

[74]  J. Veerman,et al.  Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model , 2008 .

[75]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[76]  Jae Kwang Lee,et al.  Comparable mono and bipolar connection of capacitive deionization stack in NaCl treatment , 2012 .

[77]  S. J. Kim,et al.  Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics , 2005 .

[78]  Sotira Yiacoumi,et al.  Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model , 2001 .

[79]  Doron Aurbach,et al.  Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes , 2011 .

[80]  Jae-Hwan Choi,et al.  Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications , 2010 .

[81]  Jae-Hwan Choi,et al.  Desalination of brackish water containing oil compound by capacitive deionization process , 2010 .

[82]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[83]  P. M. Biesheuvel,et al.  Water desalination using capacitive deionization with microporous carbon electrodes. , 2012, ACS applied materials & interfaces.

[84]  Jong-Ho Kim,et al.  Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution. , 2003, Journal of colloid and interface science.

[85]  Kai Dai,et al.  NaCl adsorption in multi-walled carbon nanotubes , 2005 .

[86]  I. Karagiannis,et al.  Water desalination cost literature: review and assessment , 2008 .

[87]  Michael Faraday,et al.  IV. Experimental researches in electricity.—Third series , 1833, Philosophical Transactions of the Royal Society of London.

[88]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[89]  Jeong-Ik Lee,et al.  Development of a two-dimensional coupled-implicit numerical tool for the optimal design of CDI electrodes , 2011 .

[90]  Serdar Kuyucak,et al.  Invalidity of continuum theories of electrolytes in nanopores , 2000 .

[91]  Yoshiyuki Show,et al.  Electric double layer capacitor with low series resistance fabricated by carbon nanotube addition , 2007 .

[92]  Zhuo Sun,et al.  Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization , 2012 .

[93]  Walid H. Shayya,et al.  Use of evaporation ponds for brine disposal in desalination plants , 2000 .

[94]  Jae-Hwan Choi,et al.  Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. , 2010, Water research.

[95]  Chi-Woo Lee,et al.  Desalination performance of a carbon-based composite electrode , 2009 .

[96]  Thijs Peters Desalination of seawater and brackish water with reverse osmosis and the disc tube module DT , 1999 .

[97]  Konstantinos Dermentzis,et al.  Continuous electrodeionization through electrostatic shielding , 2008 .

[98]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[99]  Manojkumar Kadam,et al.  Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology , 2011 .

[100]  R. Pekala,et al.  Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes , 1996 .

[101]  Gilbert M. Brown,et al.  Membrane and Other Treatment Technologies — Pros and Cons , 2006 .

[102]  Doron Aurbach,et al.  The feasibility of boron removal from water by capacitive deionization , 2011 .

[103]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[104]  Zhengping Hao,et al.  Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material , 2012 .

[105]  O D Savenko,et al.  Synthesis of Ion-exchange Membranes , 1968 .

[106]  Kang-Ho Lee,et al.  Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying , 2007 .

[107]  Peng Liang,et al.  Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. , 2013, Water research.

[108]  C. F. Schutte,et al.  Capacitive Deionization Technology™: An alternative desalination solution , 2005 .

[109]  Y. Oren,et al.  Water desalting by means of electrochemical parametric pumping , 1983 .

[110]  Xiaowei Sun,et al.  Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes , 2011 .

[111]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[112]  Irving Langmuir,et al.  THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. II. LIQUIDS.1 , 1917 .

[113]  Y. El-Sayed,et al.  The energetics of desalination processes , 2001 .

[114]  Isabel Villar,et al.  Carbon materials as electrodes for electrosorption of NaCl in aqueous solutions , 2011 .

[115]  T. D. Tran,et al.  Electrosorption of inorganic salts from aqueous solution using carbon aerogels. , 2002, Environmental science & technology.

[116]  How Yong Ng,et al.  Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant. , 2009, Water research.

[117]  Linda Zou,et al.  Single-walled carbon nanotubes and polyaniline composites for capacitive deionization , 2012 .

[118]  Rami Messalem,et al.  Novel ion-exchange spacer for improving electrodialysis II. Coated spacer , 1998 .

[119]  Onur N. Demirer,et al.  Energetic performance optimization of a capacitive deionization system operating with transient cycles and brackish water , 2013 .

[120]  Min-Woong Ryoo,et al.  Improvement in capacitive deionization function of activated carbon cloth by titania modification. , 2003, Water research.

[121]  Y. Oren,et al.  Water desalting by means of electrochemical parametric pumping. II. Separation properties of a multistage column , 1983 .

[122]  Y. Oren,et al.  Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) , 2008 .

[123]  Sung-Woo Hwang,et al.  Capacitance control of carbon aerogel electrodes , 2004 .

[124]  O. Kedem,et al.  Reduction of polarization in electrodialysis by ion-conducting spacers , 1975 .

[125]  Gang Wang,et al.  Activated carbon nanofiber webs made by electrospinning for capacitive deionization , 2012 .

[126]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[127]  Menachem Elimelech,et al.  Global challenges in energy and water supply: the promise of engineered osmosis. , 2008, Environmental science & technology.

[128]  Linda Zou,et al.  Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization , 2010 .

[129]  Seung-Hyeon Moon,et al.  Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. , 2010, Water research.

[130]  Chia-Hung Hou,et al.  A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. , 2013, Chemosphere.

[131]  Linda Zou,et al.  Using activated carbon electrode in electrosorptive deionisation of brackish water , 2008 .

[132]  Matthias Wessling,et al.  Practical potential of reverse electrodialysis as process for sustainable energy generation. , 2009, Environmental science & technology.

[133]  Yongsoo Jeong,et al.  Nanostructured carbon cloth electrode for desalination from aqueous solutions , 2007 .

[134]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[135]  Michael Faraday,et al.  VI. Experimental researches in electricity.-Seventh Series , 1834, Philosophical Transactions of the Royal Society of London.

[136]  P. M. Biesheuvel,et al.  Theory of membrane capacitive deionization including the effect of the electrode pore space. , 2011, Journal of colloid and interface science.

[137]  C. Tsouris,et al.  Mesoporous carbon for capacitive deionization of saline water. , 2011, Environmental science & technology.

[138]  Matthias Wessling,et al.  Membrane with integrated spacer , 2010 .

[139]  Chia-Hung Hou,et al.  A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization , 2013 .

[140]  Jae-Hwan Choi,et al.  Application of capacitive deionization (CDI) technology to insulin purification process , 2012 .

[141]  Doron Aurbach,et al.  Limitations of Charge Efficiency in Capacitive Deionization II. On the Behavior of CDI Cells Comprising Two Activated Carbon Electrodes , 2009 .

[142]  Hong-Joo Lee,et al.  Designing of an electrodialysis desalination plant , 2002 .

[143]  D. Brogioli,et al.  Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells. , 2012, Physical Review Letters.

[144]  Linda Zou,et al.  Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride , 2009 .

[145]  Zhuo Sun,et al.  Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. , 2008, Water research.

[146]  Joseph C. Farmer,et al.  Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes , 1996 .

[147]  Zhuo Sun,et al.  Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers , 2011 .

[148]  Shichang Xu,et al.  Effect of dopants on the adsorbing performance of polypyrrole/graphite electrodes for capacitive deionization process , 2012 .

[149]  Seung-Hyeon Moon,et al.  Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). , 2011, Water research.

[150]  Joseph C. Farmer,et al.  Desalination with carbon aerogel electrodes , 1996 .

[151]  Chia-Hung Hou,et al.  Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions , 2013, International Journal of Environmental Science and Technology.

[152]  Kelvin B. Gregory,et al.  Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization , 2013 .

[153]  Benoit Barbeau,et al.  Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation , 2009 .

[154]  Tingting Yan,et al.  Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures , 2011 .

[155]  Matthias Wessling,et al.  On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport , 2010 .

[156]  George W. Murphy,et al.  STUDIES ON THE ELECTROCHEMISTRY OF CARBON AND CHEMICALLY-MODIFIED CARBON SURFACES , 1961 .

[157]  Shichang Xu,et al.  Polypyrrole nanowire modified graphite (PPy/G) electrode used in capacitive deionization , 2010 .

[158]  Toraj Mohammadi,et al.  Sea water desalination using electrodialysis , 2008 .

[159]  P. M. Biesheuvel,et al.  Thermodynamic cycle analysis for capacitive deionization. , 2009, Journal of colloid and interface science.

[160]  Konstantinos Dermentzis,et al.  Continuous capacitive deionization–electrodialysis reversal through electrostatic shielding for desalination and deionization of water , 2008 .