Quantum optics of lossy asymmetric beam splitters.

We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

[1]  P. Kelley,et al.  Theory of Electromagnetic Field Measurement and Photoelectron Counting , 1964 .

[2]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[3]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[4]  Grunér,et al.  Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[6]  S. Barnett,et al.  Quantum optics of lossy beam splitters , 1998 .

[7]  J. Jeffers Interference and the lossless lossy beam splitter , 2000, quant-ph/0007025.

[8]  S. Scheel,et al.  Entanglement transformation at absorbing and amplifying four-port devices , 2000, quant-ph/0004003.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  J. Zmuidzinas Thermal noise and correlations in photon detection. , 2003, Applied optics.

[11]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[12]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[13]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[14]  A. Gossard,et al.  A Coherent Beam Splitter for Electronic Spin States , 2010, Science.

[15]  杨巍,et al.  Quantization of electromagnetic field in quadratic continuous nonlinear absorptive dielectrics , 2010 .

[16]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[17]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[18]  J. Fink,et al.  Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies , 2013, Nature Physics.

[19]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[20]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[21]  S. A. Goorden,et al.  Programming balanced optical beam splitters in white paint. , 2014, Optics express.

[22]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[23]  J. Jeffers,et al.  Coherent perfect absorption in deeply subwavelength films in the single-photon regime , 2015, Nature Communications.

[24]  A. Tredicucci,et al.  Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. , 2015, Optics express.

[25]  I. Walmsley Quantum optics: Science and technology in a new light , 2015, Science.

[26]  Tom A W Wolterink,et al.  Programmable multiport optical circuits in opaque scattering materials. , 2014, Optics express.

[27]  A. Aspect,et al.  Atomic Hong–Ou–Mandel experiment , 2014, Nature.

[28]  Brian J. Smith,et al.  Two-photon quantum walk in a multimode fiber , 2015, Science Advances.

[29]  K. Boller,et al.  Programmable two-photon quantum interference in $10^3$ channels in opaque scattering media , 2015, 1511.00897.