Robust Output Feedback MPC: An Interval-Observer Approach

This work addresses the problem of output feedback Model Predictive Control (MPC) of constrained, linear, discrete-time systems corrupted by additive perturbations on both state and output. The use of estimated variables in MPC is challenging due to the need of guaranteeing robust constraint satisfaction. Many of the existing solutions for this problem are either computationally expensive or conservative. To overcome this issue and cope with uncertainty, the proposed approach incorporates interval observers on the MPC scheme, leading to a novel, simple and very intuitive methodology providing robust constraint satisfaction with reduced computational complexity.

[1]  Denis V. Efimov,et al.  Interval estimation for uncertain systems with time-varying delays , 2013, Int. J. Control.

[2]  Denis V. Efimov,et al.  Interval Observers for Time-Varying Discrete-Time Systems , 2013, IEEE Transactions on Automatic Control.

[3]  A. Garulli,et al.  Output-feedback predictive control of constrained linear systems via set-membership state estimation , 2000 .

[4]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[5]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems: Time varying case , 2009, Autom..

[6]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[7]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[8]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[9]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[10]  Wilfrid Perruquetti,et al.  On interval observer design for time-invariant discrete-time systems , 2013, 2013 European Control Conference (ECC).

[11]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[14]  Denis V. Efimov,et al.  Interval observers for continuous-time LPV systems with L1/L2 performance , 2015, Autom..

[15]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[16]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[17]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[18]  Frédéric Mazenc,et al.  Interval observers for discrete-time systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Wilfrid Perruquetti,et al.  Interval Prediction for Continuous-Time Systems with Parametric Uncertainties , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[20]  Frédéric Mazenc,et al.  Interval observer composed of observers for nonlinear systems , 2014, 2014 European Control Conference (ECC).

[21]  Denis V. Efimov,et al.  Design of interval observers for uncertain dynamical systems , 2016, Automation and Remote Control.