Testing finite state machines

We present simple randomized algorithms for the fault detection problem: Given a specification in the form of a deterministic finite state machine A and an implementation machine B, determine whether B is equal to A. If A has n states and p inputs, then in randomized polynomial time we can construct with high probability a checking sequence of length O(pn4 log n), i.e., a sequence that detects all faulty machines with at most n states. Better bounds can be obtained in certain cases. The techniques generalize to partially specified finite state machines.

[1]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[2]  Arthur Gill,et al.  Sate-Identification Experiments in Finite Automata , 1961, Inf. Control..

[3]  Arthur Gill,et al.  Introduction to the theory of finite-state machines , 1962 .

[4]  F. C. Hennine Fault detecting experiments for sequential circuits , 1964, SWCT 1964.

[5]  Technical program issued for symposium on switching circuit theory and logical design , 1964, IEEE Spectrum.

[6]  Z. Kohavi,et al.  Variable-Length Distinguishing Sequences and Their Application to the Design of Fault-Detection Experiments , 1968, IEEE Transactions on Computers.

[7]  Güney Gönenç,et al.  A Method for the Design of Fault Detection Experiments , 1970 .

[8]  Arthur D. Friedman,et al.  Fault detection in digital circuits , 1971 .

[9]  M. N. Sokolovskii Diagnostic experiments with automata , 1971, Cybernetics.

[10]  Charles L. Seitz,et al.  AN APPROACH TO DESIGNING CHECKING EXPERIMENTS BASED ON A DYNAMIC MODEL , 1971 .

[11]  Edward P. Hsieh,et al.  Checking Experiments ror Sequential Machines , 1971, IEEE Transactions on Computers.

[12]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[13]  Boris A. Trakhtenbrot,et al.  Finite automata : behavior and synthesis , 1973 .

[14]  M. P. Vasilevskii Failure diagnosis of automata , 1973 .

[15]  S. M. Gobershtein Check words for the states of a finite automaton , 1974 .

[16]  Tsun S. Chow,et al.  Testing Software Design Modeled by Finite-State Machines , 1978, IEEE Transactions on Software Engineering.

[17]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[18]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[19]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[20]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[21]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[22]  Sorin Istrail,et al.  Polynomial universal traversing sequences for cycles are constructible , 1988, STOC '88.

[23]  Krishan K. Sabnani,et al.  A Protocol Test Generation Procedure , 1988, Comput. Networks.

[24]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  Ronald L. Rivest,et al.  Inference of finite automata using homing sequences , 1989, STOC '89.

[26]  Deepinder P. Sidhu,et al.  Formal Methods for Protocol Testing: A Detailed Study , 1989, IEEE Trans. Software Eng..

[27]  W. Y. L. Chan,et al.  An improved protocol test generation procedure based on UIOS , 1989, SIGCOMM 1989.

[28]  Edward A. Feigenbaum,et al.  Switching and Finite Automata Theory: Computer Science Series , 1990 .

[29]  Wen-Huei Chen,et al.  An Optimization Technique for Protocol Conformance Testing Using Multiple Uio Sequences , 1990, Inf. Process. Lett..

[30]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computations , 1990, STOC '90.

[31]  Bo Yang,et al.  Protocol conformance test generation using multiple UIO sequences with overlapping , 1990, SIGCOMM '90.

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[33]  Ferhat Khendek,et al.  Test Selection Based on Finite State Models , 1991, IEEE Trans. Software Eng..

[34]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[35]  Alfred V. Aho,et al.  An optimization technique for protocol conformance test generation based on UIO sequences and rural Chinese postman tours , 1991, IEEE Trans. Commun..

[36]  Sanjoy Paul,et al.  Generating minimal length test sequences for conformance testing of communication protocols , 1991, IEEE INFCOM '91. The conference on Computer Communications. Tenth Annual Joint Comference of the IEEE Computer and Communications Societies Proceedings.

[37]  David Lee,et al.  Online minimization of transition systems (extended abstract) , 1992, STOC '92.

[38]  Fabrizio Lombardi,et al.  Protocol conformance testing using multiple UIO sequences , 1989, IEEE Trans. Commun..

[39]  Ronald L. Rivest,et al.  Inference of finite automata using homing sequences , 1989, STOC '89.