Nonlinear Vibrations and Stability of Shells and Plates

Introduction. 1. Nonlinear theories of elasticity of plates and shells 2. Nonlinear theories of doubly curved shells for conventional and advanced materials 3. Introduction to nonlinear dynamics 4. Vibrations of rectangular plates 5. Vibrations of empty and fluid-filled circular cylindrical 6. Reduced order models: proper orthogonal decomposition and nonlinear normal modes 7. Comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells 8. Effect of boundary conditions on a large-amplitude vibrations of circular cylindrical shells 9. Vibrations of circular cylindrical panels with different boundary conditions 10. Nonlinear vibrations and stability of doubly-curved shallow-shells: isotropic and laminated materials 11. Meshless discretization of plates and shells of complex shapes by using the R-functions 12. Vibrations of circular plates and rotating disks 13. Nonlinear stability of circular cylindrical shells under static and dynamic axial loads 14. Nonlinear stability and vibrations of circular shells conveying flow 15. Nonlinear supersonic flutter of circular cylindrical shells with imperfections.

[1]  Hans Krumhaar,et al.  INVESTIGATION OF THE ACCURACY OF LINEAR PISTON THEORY WHEN APPLIED TO CYLINDRICAL SHELLS , 1963 .

[2]  Anthony N. Palazotto,et al.  On the finite element analysis of non-linear vibration for cylindrical shells with high-order shear deformation theory , 1991 .

[3]  P. M. Naghdi,et al.  On the nonlinear theory of elastic shells under the Kirchhoff hypothesis , 1963 .

[4]  Yukinori Kobayashi,et al.  Two-mode response of simply supported, rectangular laminated plates , 1998 .

[5]  Y. C. Fung,et al.  Supersonic flutter of circular cylindrical shells subjected to internal pressure and axial compression. , 1966 .

[6]  F. Busse An exploration of chaos: J. Argyris, G. Faust and M. Haase, Elsevier, Amsterdam, 1994, 722 pp., ISBN 0-444-82002-7 (hardbound), 0-444-82003-5 (paperback) , 1994 .

[7]  Arvind Raman,et al.  Effects of imperfection on the non-linear oscillations of circular plates spinning near critical speed , 2001 .

[8]  Paulo B. Gonçalves,et al.  Non-linear vibration analysis of fluid-filled cylindrical shells , 1988 .

[9]  C. Mei,et al.  A FINITE ELEMENT TIME DOMAIN MODAL FORMULATION FOR LARGE AMPLITUDE FREE VIBRATIONS OF BEAMS AND PLATES , 1996 .

[10]  John C. Yao,et al.  Nonlinear Elastic Buckling and Parametric Excitation of a Cylinder Under Axial Loads , 1965 .

[11]  Marco Amabili,et al.  EIGENVALUE PROBLEMS FOR VIBRATING STRUCTURES COUPLED WITH QUIESCENT FLUIDS WITH FREE SURFACE , 2000 .

[12]  Bernard Budiansky,et al.  Notes on nonlinear shell theory. , 1968 .

[13]  Alexander F. Vakakis,et al.  An Energy-Based Formulation for Computing Nonlinear Normal Modes in Undamped Continuous Systems , 1994 .

[14]  M. P. Païdoussis,et al.  NONLINEAR VIBRATIONS OF SIMPLY SUPPORTED, CIRCULAR CYLINDRICAL SHELLS, COUPLED TO QUIESCENT FLUID , 1998 .

[15]  Marco Amabili,et al.  EXPERIMENTAL STUDY ON LARGE-AMPLITUDE VIBRATIONS OF WATER-FILLED CIRCULAR CYLINDRICAL SHELLS , 2002 .

[16]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[17]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .

[18]  C. D. Mote,et al.  Aerodynamically Excited Vibration And Flutter Of A Thin Disk Rotating At Supercritical Speed , 1993 .

[19]  Christophe Pierre,et al.  Nonlinear normal modes for vibratory systems under harmonic excitation , 2005 .

[20]  C. Chia Nonlinear vibration and postbuckling of unsymmetrically laminated imperfect shallow cylindrical panels with mixed boundary conditions resting on elastic foundation , 1987 .

[21]  D. S. Dugdale Non-linear vibration of a centrally clamped rotating disc , 1979 .

[22]  E. Grinevich,et al.  An experimental study of the nonlinear dynamics of cylindrical shells with clamped ends subjected to axial flow , 2005 .

[23]  J. Carr Applications of Centre Manifold Theory , 1981 .

[24]  Maurice Petyt,et al.  Geometrical non-linear, steady state, forced, periodic vibration of plates, Part I: Model and convergence studies , 1999 .

[25]  T. K. Varadan,et al.  LARGE AMPLITUDE VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS , 1996 .

[26]  C. Y. Chia,et al.  Non-linear vibration and postbuckling of generally laminated circular cylindrical thick shells with non-uniform boundary conditions , 1993 .

[27]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[28]  P. C. Dumir Non-linear vibration and postbuckling of isotrophic thin circular plates on elastic foundations , 1986 .

[29]  M. P. Païdoussis,et al.  NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART I: STABILITY , 1999 .

[30]  Earl H. Dowell,et al.  Modal equations for the nonlinear flexural vibrations of a cylindrical shell , 1968 .

[31]  M. P. Païdoussis,et al.  Dynamics and Stability of Coaxial Cylindrical Shells Conveying Viscous Fluid , 1985 .

[32]  Anthony N. Palazotto,et al.  Nonlinear Dynamic Finite Element Analysis of Composite Cylindrical Shells Considering Large Rotations , 1999 .

[33]  Hu-Nan Chu,et al.  Influence of Large Amplitudes on Flexural Vibrations of a Thin Circular Cylindrical Shell , 1961 .

[34]  J. N. Reddy,et al.  Exact Solutions of Moderately Thick Laminated Shells , 1984 .

[35]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[36]  Maher N. Bismarck-Nasr,et al.  Finite Element Analysis of Aeroelasticity of Plates and Shells , 1992 .

[37]  S. A. Tobias,et al.  The Influence of Dynamical Imperfection on the Vibration of Rotating Disks , 1957 .

[38]  R. Stearman,et al.  Influence of a supersonic flowfield on the elastic stability of cylindrical shells , 1970 .

[39]  J. G. Simmonds,et al.  The Nonlinear Theory of Elastic Shells , 1998 .

[40]  K. Chandrashekhara,et al.  Geometrically non-linear transient analysis of laminated, doubly curved shells , 1985 .

[41]  A. Noor,et al.  Reduced basis technique for nonlinear vibration analysis of composite panels , 1993 .

[42]  V. V. Bolotin,et al.  Nonconservative problems of the theory of elastic stability , 1963 .

[43]  Bogdan I. Epureanu,et al.  Coherent structures and their influence on the dynamics of aeroelastic panels , 2004 .

[44]  Roger Ohayon,et al.  Interactions fluides-structures , 1992 .

[45]  P. I. Galaka,et al.  Parametric instability of glass-plastic cylindrical shells , 1977 .

[46]  Vadim Shapiro,et al.  On completeness of RFM solution structures , 2000 .

[47]  Charles M. Krousgrill,et al.  Non-Linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance , 1993 .

[48]  A. Chaigne,et al.  Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: Experiments , 2003 .

[49]  Paulo B. Gonçalves,et al.  Nonlinear Oscillations and Stability of Parametrically Excited Cylindrical Shells , 2002 .

[50]  K. Soldatos Nonlinear Analysis of Transverse Shear Deformable Laminated Composite Cylindrical Shells—Part I: Derivation of Governing Equations , 1992 .

[51]  Joseph C. Slater,et al.  A numerical method for determining nonlinear normal modes , 1996 .

[52]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[53]  O. Thomas,et al.  Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry , 2006 .

[54]  Youhe Zhou,et al.  Active control of nonlinear piezoelectric circular shallow spherical shells , 2000 .

[55]  V. V. Novozhilov,et al.  Foundations of the nonlinear theory of elasticity , 1953 .

[56]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[57]  Cyril Touzé,et al.  Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance , 2005 .

[58]  Maurice Petyt,et al.  GEOMETRICAL NON-LINEAR, STEADY STATE, FORCED, PERIODIC VIBRATION OF PLATES, PART II: STABILITY STUDY AND ANALYSIS OF MULTI-MODAL RESPONSE , 1999 .

[59]  A. Tondl,et al.  Non-linear Vibrations , 1986 .

[60]  Gaëtan Kerschen,et al.  On the exploitation of chaos to build reduced-order models , 2003 .

[61]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[62]  P. Wriggers,et al.  An energy–momentum integration scheme and enhanced strain finite elements for the non-linear dynamics of shells , 2002 .

[63]  U. Olsson Supersonic flutter of heated circular cylindrical shells with temperature-dependent material properties , 1978 .

[64]  Ali H. Nayfeh,et al.  A unified nonlinear formulation for plate and shell theories , 1994 .

[65]  Liviu Librescu,et al.  Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels , 1993 .

[66]  Andrew Y. T. Leung,et al.  A symplectic Galerkin method for non-linear vibration of beams and plates , 1995 .

[67]  A. Vakakis,et al.  PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS , 2001 .

[68]  Peter Wriggers,et al.  Nonlinear Dynamics of Shells: Theory, Finite Element Formulation, and Integration Schemes , 1997 .

[69]  T. K. Varadan,et al.  Nonlinear free flexural vibration of thin circular cylindrical shells , 1989 .

[70]  Atanas A. Popov,et al.  LOW DIMENSIONAL MODELS OF SHELL VIBRATIONS. PARAMETRICALLY EXCITED VIBRATIONS OF CYLINDER SHELLS , 1998 .

[71]  G. C. Sinharay,et al.  Large Amplitude Free Vibrations of Shells of Variable Thickness—A New Approach , 1986 .

[72]  T. Wah Vibration of Circular Plates at Large Amplitudes , 1963 .

[73]  J. Nowinski NONLINEAR TRANSVERSE VIBRATIONS OF ORTHOTROPIC CYLINDRICAL SHELLS , 1963 .

[74]  L. L. Carter,et al.  SOME ASPECTS OF CYLINDRICAL SHELL PANEL FLUTTER. , 1967 .

[75]  David A. Evensen,et al.  Some observations on the nonlinear vibration of thin cylindrical shells , 1963 .

[76]  Marco Amabili,et al.  Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods , 2007 .

[77]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[78]  Takao Yamaguchi,et al.  Chaotic Vibrations of a Cylindrical Shell-Panel with an In-Plane Elastic-Support at Boundary , 1997 .

[79]  Marco Amabili,et al.  A TECHNIQUE FOR THE SYSTEMATIC CHOICE OF ADMISSIBLE FUNCTIONS IN THE RAYLEIGH–RITZ METHOD , 1999 .

[80]  James H. Starnes,et al.  Nonlinear Analysis of the Space Shuttle Super-Lightweight External Fuel Tank , 1996 .

[81]  J. H. Ginsberg,et al.  Large Amplitude Forced Vibrations of Simply Supported Thin Cylindrical Shells , 1973 .

[82]  S. M. Dickinson,et al.  On the use of artificial springs in the study of the free vibrations of systems comprised of straight and curved beams , 1992 .

[83]  Leslie Robert Koval Effect of longitudinal resonance the parametric stability of an axially excited cylindrical shell , 1974 .

[84]  J. Hutchinson Axial buckling of pressurized imperfect cylindrical shells , 1965 .

[85]  G. C. Kung,et al.  Nonlinear Flexural Vibrations of a Clamped Circular Plate , 1972 .

[86]  Christophe Pierre,et al.  Non-linear normal modes and invariant manifolds , 1991 .

[87]  G. C. Sinharay,et al.  Large amplitude free vibrations of shallow spherical shell and cylindrical shell — A new approach , 1985 .

[88]  I. I. Vorovich,et al.  Nonlinear Theory of Shallow Shells , 1999 .

[89]  Arvind Raman,et al.  Experimental studies on the non-linear oscillations of imperfect circular disks spinning near critical speed , 2001 .

[90]  S. A. Tobias Free Undamped Non-Linear Vibrations of Imperfect Circular Disks , 1957 .

[91]  Mervyn W. Olson,et al.  Some Experimeiital Observations on the Nonlinear Vibration of Cylindrical Shells , 1965 .

[92]  D. Decker,et al.  Topics in bifurcation theory , 1978 .

[93]  E. Dowell Flutter of infinitely long plates and shells. II - Cylindrical shell. , 1966 .

[94]  E. Ventsel,et al.  The R-function method for the free vibration analysis of thin orthotropic plates of arbitrary shape , 2003 .

[95]  V. D. Kubenko,et al.  Nonlinear problems of the vibration of thin shells (review) , 1998 .

[96]  Earl H. Dowell,et al.  Nonlinear flutter of curved plates. , 1969 .

[97]  Victor Birman,et al.  Small Vibrations of an Imperfect Panel in the Vicinity of a Non-Linear Static State , 1987 .

[98]  Yukinori Kobayashi,et al.  Non-linear vibration characteristics of clamped laminated shallow shells , 2000 .

[99]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[100]  Marco Amabili,et al.  Nonlinear Vibrations of Circular Cylindrical Shells with Different Boundary Conditions , 2003 .

[101]  Marco Amabili,et al.  Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections , 2006 .

[102]  Michael P. Païdoussis,et al.  A cantilever conveying fluid: coherent modes versus beam modes , 2004 .

[103]  Jin-Guang Teng,et al.  Buckling of Thin Shells: Recent Advances and Trends , 1996 .

[104]  Effect of Boundary Conditions on Nonlinear Vibrations of Circular Cylindrical Panels , 2007 .

[105]  D. Hui Effects of Geometric Imperfections on Large-Amplitude Vibrations of Rectangular Plates With Hysteresis Damping , 1984 .

[106]  Anthony N. Palazotto,et al.  Large displacement and rotational formulation for laminated shells including parabolic transverse shear , 1990 .

[107]  Michael P. Païdoussis,et al.  Flutter of thin cylindrical shells conveying fluid , 1972 .

[108]  J. L. Nowinski,et al.  Nonlinear Transverse Vibrations of a Spinning Disk , 1964 .

[109]  Claude-Henri Lamarque,et al.  Analysis of non-linear dynamical systems by the normal form theory , 1991 .

[110]  M. Amabili,et al.  Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments , 2007 .

[111]  A. Vakakis,et al.  Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part 1: Equations of motion and numerical results , 2000 .

[112]  Theodore von Karman,et al.  The buckling of thin cylindrical shells under axial compression , 2003 .

[113]  James H. Starnes,et al.  Effects of initial geometric imperfections on the non-linear response of the Space Shuttle superlightweight liquid-oxygen tank , 2002 .

[114]  C. Y. Chia,et al.  Multi-mode non-linear vibration and postbuckling of anti-symmetric imperfect angle-ply cylindrical thick panels , 1989 .

[115]  C. Y. Chia,et al.  Nonlinear analysis of doubly curved symmetrically laminated shallow shells with rectangular planform , 1988 .

[116]  Nonlinear Stability of Circular Cylindrical Shells in Annular and Unbounded Axial Flow , 2001 .

[117]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[118]  S. A. Tobias,et al.  Forced Undamped Non-Linear Vibrations of Imperfect Circular Discs , 1963 .

[119]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[120]  Eelco Jansen Non-stationary flexural vibration behaviour of a cylindrical shell , 2002 .

[121]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[122]  M. P. Païdoussis,et al.  NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID, PART II: LARGE-AMPLITUDE VIBRATIONS WITHOUT FLOW , 1999 .

[123]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[124]  C. Y. Chia,et al.  Non-linear vibration and postbuckling of unsymmetric cross-ply circular cylindrical shells , 1988 .

[125]  Maurice Petyt,et al.  Non-linear free vibration of isotropic plates with internal resonance , 2000 .

[126]  D. A. Evensen,et al.  Circumferentially traveling wave flutter of a circular cylindrical shell. , 1968 .

[127]  Augustin-Louis Cauchy,et al.  Oeuvres complétes: Sur l'équilibre et le mouvement d'une plaque solide , 2009 .

[128]  Christophe Pierre,et al.  The construction of non-linear normal modes for systems with internal resonance , 2005 .

[129]  Lawrence Sirovich,et al.  The use of the Karhunen-Loegve procedure for the calculation of linear Eigenfunctions , 1991 .

[130]  Y. Fung Foundations of solid mechanics , 1965 .

[131]  N. Yamaki,et al.  Dynamic stability of circular cylindrical shells under periodic compressive forces , 1978 .

[132]  A. H. Nayfeh,et al.  Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems , 2003 .

[133]  M. Mukhopadhyay,et al.  Large‐amplitude finite element flexural vibration of plates/stiffened plates , 1993 .

[134]  C. Pierre,et al.  A NEW GALERKIN-BASED APPROACH FOR ACCURATE NON-LINEAR NORMAL MODES THROUGH INVARIANT MANIFOLDS , 2002 .

[135]  M. P. Païdoussis,et al.  A compact limit-cycle oscillation model of a cantilever conveying fluid , 2003 .

[136]  R. Benamar,et al.  Improvement of the semi-analytical method, based on Hamilton's principle and spectral analysis, for determination of the geometrically non-linear response of thin straight structures. Part III: steady state periodic forced response of rectangular plates , 2003 .

[137]  Isaac M Daniel,et al.  Engineering Mechanics of Composite Materials , 1994 .

[138]  P. S. Koval’chuk,et al.  Effect of initial camber on natural nonlinear vibrations of cylindrical shells , 1982 .

[139]  W. Soedel Vibrations of shells and plates , 1981 .

[140]  D. S. Weaver,et al.  On the Dynamic Stability of Fluid-Conveying Pipes , 1973 .

[141]  Marco Amabili,et al.  Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections , 2003 .

[142]  Marco Amabili,et al.  Nonlinear stability of cylindrical shells subjected to axial flow : Theory and experiments , 2008 .

[143]  M. Petyt,et al.  Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—II: 1st mode of laminated plates and higher modes of isotropic and laminated plates , 1997 .

[144]  Paulo B. Gonçalves,et al.  CHAOTIC BEHAVIOR RESULTING IN TRANSIENT AND STEADY STATE INSTABILITIES OF PRESSURE-LOADED SHALLOW SPHERICAL SHELLS , 2003 .

[145]  Marco Amabili Theory and experiments for large-amplitude vibrations of circular cylindrical panels with geometric imperfections , 2006 .

[146]  M. Amabili,et al.  VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS WITH NONUNIFORM CONSTRAINTS, ELASTIC BED AND ADDED MASS. PART III: STEADY VISCOUS EFFECTS ON SHELLS CONVEYING FLUID , 2002 .

[147]  G. J. Efstathiades A new approach to the large-deflection vibrations of imperfect circular disks using Galerkin's procedure , 1971 .

[148]  P. S. Koval’chuk,et al.  Non-linear interaction of bending deformations of free-oscillating cylindrical shells , 2003 .

[149]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[150]  C. D. Babcock,et al.  Nonlinear Vibration of Cylindrical Shells , 1975 .

[151]  Marco Amabili,et al.  Parametric instability of a circular cylindrical shell with geometric imperfections , 2004 .

[152]  Robert Bouc,et al.  A new formulation for the existence and calculation of nonlinear normal modes , 2005 .

[153]  Marco Amabili,et al.  Nonlinear vibrations of circular cylindrical panels , 2005 .

[154]  Alexander F. Vakakis,et al.  Interaction Between Slow and Fast Oscillations in an Infinite Degree-of-Freedom Linear System Coupled to a Nonlinear Subsystem: Theory and Experiment , 1999 .

[155]  C. D. Babcock,et al.  Dynamic Stability of Cylindrical Shells Under Step Loading , 1975 .

[156]  D. A. Evensen,et al.  Nonlinear flexural vibrations of thin-walled circular cylinders , 1967 .

[157]  Marco Amabili,et al.  A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach , 2003 .

[158]  Eduard Ventsel,et al.  Application of the R-function method to nonlinear vibrations of thin plates of arbitrary shape , 2005 .

[159]  C. R. Calladine,et al.  Understanding imperfection-sensitivity in the buckling of thin-walled shells , 1995 .

[160]  M. P. Païdoussis,et al.  Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method , 2003 .

[161]  M. P. Païdoussis,et al.  Dynamics and stability of coaxial cylindrical shells containing flowing fluid , 1984 .

[162]  Cyril Touzé,et al.  ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY , 2002 .

[163]  M. Petyt,et al.  Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—I: The fundamental mode of isotropic plates , 1997 .

[164]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[165]  E. Dowell Panel flutter - A review of the aeroelastic stability of plates and shells , 1970 .

[166]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[167]  M. Chiba,et al.  Non-linear vibrations of a clamped circular plate with initial deflection and initial edge displacement, part I: Theory , 1981 .

[168]  C. D. Mote,et al.  Non-linear oscillations of circular plates near a critical speed resonance , 1999 .

[169]  Marco Amabili,et al.  Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments , 2004 .

[170]  Marco Amabili,et al.  Nonlinear Supersonic Flutter of Circular Cylindrical Shells , 2001 .

[171]  Arthur W. Leissa,et al.  Curvature effects on shallow shell vibrations , 1971 .

[172]  E. Ventsel,et al.  Vibrations of Shells , 2001 .

[173]  M. P. Païdoussis,et al.  NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART III: TRUNCATION EFFECT WITHOUT FLOW AND EXPERIMENTS , 2000 .

[174]  Atanas A. Popov,et al.  Parametric resonance in cylindrical shells: a case study in the nonlinear vibration of structural shells , 2003 .

[175]  Liviu Librescu,et al.  Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures , 1975 .

[176]  A. Raman,et al.  Nonlinear aeroelastic flutter phenomena of a flexible disk rotating in an unbounded fluid , 2005 .

[177]  C. Chia Nonlinear analysis of plates , 1980 .

[178]  R. Raouf A qualitative analysis of the nonlinear dynamic characteristics of curved orthotropic panels , 1993 .

[179]  J. Ramachandran Large‐amplitude vibrations of elastically restrained circular plates , 1974 .

[180]  Alexander F. Vakakis,et al.  Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells, Part 2: Perturbation Analysis , 2000 .

[181]  Earl H. Dowell,et al.  Nonlinear flutter of curved plates. II , 1970 .

[182]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[183]  D. A. Evensen,et al.  Nonlinear flutter of a circular cylindrical shell in supersonic flow , 1967 .

[184]  L. Gunawan Experimental study of nonlinear vibrations of thin-walled cylindrical shells , 1998 .

[185]  Marco Amabili,et al.  Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method , 2006 .

[186]  D. Hui Accurate Backbone Curves for a Modified-Duffing Equation for Vibrations of Imperfect Structures With Viscous Damping , 1990 .

[187]  V. Kubenko,et al.  Vibration effects of the dynamic interaction between a gas-liquid medium and elastic shells , 2000 .

[188]  Dynamic Stability of Cylindrical Shells under Static and Periodic Axial and Radial Loads , 1963 .

[189]  Marco Amabili,et al.  Multimode Approach to Nonlinear Supersonic Flutter of Imperfect Circular Cylindrical Shells , 2002 .

[190]  M. Chiba Experimental Studies on a Nonlinear Hydroelastic Vibration of a Clamped Cylindrical Tank Partially Filled With Liquid , 1993 .

[191]  Marco Amabili,et al.  Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads , 2006 .

[192]  M. Sathyamoorthy,et al.  Nonlinear Vibration Analysis of Plates: A Review and Survey of Current Developments , 1987 .

[193]  R. Ibrahim Liquid Sloshing Dynamics: Theory and Applications , 2005 .

[194]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[195]  R. Stearman,et al.  Recent Contributions to Experiments on Cylindrical Shell Panel Flutter , 1974 .

[196]  Y. C. Fung,et al.  Comparing theory and experiment for the supersonic flutter of circular cylindrical shells. , 1967 .

[197]  T. K. Varadan,et al.  Field-Consistent Element Applied to Flutter Analysis of Circular Cylindrical Shells , 1994 .

[198]  Ioannis T. Georgiou,et al.  Advanced Proper Orthogonal Decomposition Tools: Using Reduced Order Models to Identify Normal Modes of Vibration and Slow Invariant Manifolds in the Dynamics of Planar Nonlinear Rods , 2005 .

[199]  Marco Amabili,et al.  NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONVEYING FLOWING FLUID , 2002 .

[200]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[201]  A. H. Nayfeh,et al.  Non-linear resonances in the forced responses of plates, part 1: Symmetric responses of circular plates , 1975 .

[202]  M. Païdoussis,et al.  Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction , 2003 .

[203]  Y. Mikhlin Matching of local expansions in the theory of non-linear vibrations , 1995 .

[204]  Lakshman Watawala,et al.  Influence of initial geometric imperfections on vibrations of thin circular cylindrical shells , 1983 .

[205]  E. Dowell,et al.  Aeroelasticity of Plates and Shells , 1974 .

[206]  G. Simitses,et al.  Elastic stability of circular cylindrical shells , 1984 .

[207]  Chuh Mei,et al.  Review of Nonlinear Panel Flutter at Supersonic and Hypersonic Speeds , 1999 .

[208]  Yuan-Cheng Fung,et al.  Thin-Shell Structures: Theory, Experiment, and Design. , 1974 .

[209]  J. L. Sanders,et al.  NONLINEAR THEORIES FOR THIN SHELLS , 1963 .

[210]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[211]  V. V. Novozhilov,et al.  Thin shell theory , 1964 .

[212]  Marco Amabili,et al.  VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS WITH NONUNIFORM CONSTRAINTS, ELASTIC BED AND ADDED MASS; PART II: SHELLS CONTAINING OR IMMERSED IN AXIAL FLOW , 2002 .

[213]  C. Chia,et al.  Geometrically Nonlinear Behavior of Composite Plates: A Review , 1988 .

[214]  J. Reddy Analysis of functionally graded plates , 2000 .

[215]  E. Jansen Dynamic Stability Problems of Anisotropic Cylindrical Shells via a Simplified Analysis , 2005 .

[216]  Liviu Librescu,et al.  Refined geometrically nonlinear theories of anisotropic laminated shells , 1987 .

[217]  A. Popov,et al.  CHAOTIC ENERGY EXCHANGE THROUGH AUTO-PARAMETRIC RESONANCE IN CYLINDRICAL SHELLS , 2001 .

[218]  A. Bhattacharya Nonlinear Flexural Vibrations of Thin Shallow Translational Shells , 1976 .

[219]  James H. Starnes,et al.  Non-Classical Problems in the Theory of Elastic Stability , 2005 .

[220]  L. V. Kurpa,et al.  Solution of vibration problems for shallow shells of arbitrary form by the R-function method , 2005 .

[221]  T. K. Varadan,et al.  Nonlinear flexural vibrations of laminated orthotropic plates , 1991 .

[222]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[223]  Alexander F. Vakakis,et al.  Subharmonic travelling waves in a geometrically non-linear circular plate , 1994 .

[224]  Marco Amabili,et al.  Non-linear vibrations of doubly curved shallow shells , 2005 .

[225]  Chia Chuen-Yuan,et al.  Non-linear free vibration and postbuckling of symmetrically laminated orthotropic imperfect shallow cylindrical panels with two adjacent edges simply supported and the other edges clamped , 1987 .

[226]  P. S. Koval’chuk,et al.  Resonance phenomena in nonlinear vibrations of cylindrical shells with initial imperfections , 1979 .

[227]  R. M. Evan-Iwanowski,et al.  Parametric Instability of Circular Cylindrical Shells , 1967 .

[228]  Marco Amabili,et al.  Effect of the geometry on the non-linear vibration of circular cylindrical shells , 2002 .

[229]  T. K. Varadan,et al.  Nonlinear free flexural vibrations of laminated circular cylindrical shells , 1995 .

[230]  N. Yamaki,et al.  Non-linear vibrations of a clamped circular plate with initial deflection and initial edge displacement, part II: Experiment , 1981 .

[231]  Yukinori Kobayashi,et al.  Large amplitude free vibration of thick shallow shells supported by shear diaphragms , 1995 .

[232]  Eelco Jansen,et al.  A comparison of analytical–numerical models for nonlinear vibrations of cylindrical shells , 2004 .

[233]  R. Benamar,et al.  GEOMETRICALLY NON-LINEAR FREE VIBRATION OF FULLY CLAMPED SYMMETRICALLY LAMINATED RECTANGULAR COMPOSITE PLATES , 2002 .

[234]  B. E. Cummings,et al.  Large-amplitude vibration and response of curved panels , 1964 .

[235]  Cyril Touzé,et al.  Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes , 2004 .

[236]  Marco Amabili,et al.  Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads , 2003 .

[237]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .