N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

[1]  Faraz Hach,et al.  Spatial genomic heterogeneity within localized, multifocal prostate cancer , 2015, Nature Genetics.

[2]  W. Lam,et al.  Polycomb-mediated silencing in neuroendocrine prostate cancer , 2015, Clinical Epigenetics.

[3]  K. Knudsen,et al.  Models of neuroendocrine prostate cancer. , 2014, Endocrine-related cancer.

[4]  E. Cuppen,et al.  Identification of Multipotent Luminal Progenitor Cells in Human Prostate Organoid Cultures , 2014, Cell.

[5]  Erin F. Simonds,et al.  Drugging MYCN through an allosteric transition in Aurora kinase A. , 2014, Cancer cell.

[6]  M. Rubin,et al.  Proposed Morphologic Classification of Prostate Cancer With Neuroendocrine Differentiation , 2014, The American journal of surgical pathology.

[7]  M. Rubin,et al.  Aggressive Variants of Castration-Resistant Prostate Cancer , 2014, Clinical Cancer Research.

[8]  H. Beltran The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential , 2014, Molecular Cancer Research.

[9]  M. Rubin,et al.  High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. , 2014, Cancer research.

[10]  Wennuan Liu,et al.  Rb Loss Is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma , 2013, Clinical Cancer Research.

[11]  Aaron R Cooper,et al.  Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells , 2013, Proceedings of the National Academy of Sciences.

[12]  William A Weiss,et al.  Neuroblastoma and MYCN. , 2013, Cold Spring Harbor perspectives in medicine.

[13]  Daniel Bottomly,et al.  Androgen Receptor Promotes Ligand-Independent Prostate Cancer Progression through c-Myc Upregulation , 2013, PloS one.

[14]  X. Liu,et al.  Amplitude Modulation of Androgen Signaling by C-myc Material Supplemental , 2013 .

[15]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.

[16]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[17]  M. Ittmann,et al.  Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. , 2012, Cancer cell.

[18]  M. Roussel,et al.  A mouse model of the most aggressive subgroup of human medulloblastoma. , 2012, Cancer cell.

[19]  M. Gerstein,et al.  Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. , 2011, Cancer discovery.

[20]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[21]  Robert A. Weinberg,et al.  Tumor Metastasis: Molecular Insights and Evolving Paradigms , 2011, Cell.

[22]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[23]  R. Montironi,et al.  ERG–TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: evidence supporting monoclonal origin , 2011, Modern Pathology.

[24]  A. Berns,et al.  Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. , 2011, Cancer cell.

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[27]  Jiaoti Huang,et al.  Identification of a Cell of Origin for Human Prostate Cancer , 2010, Science.

[28]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[29]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[30]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[31]  M. Shen,et al.  A luminal epithelial stem cell that is a cell of origin for prostate cancer , 2009, Nature.

[32]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[33]  C. Bieberich,et al.  Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate , 2009, The Prostate.

[34]  R. Beijersbergen,et al.  Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. , 2009, Cancer cell.

[35]  O. Witte,et al.  Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics , 2008, Proceedings of the National Academy of Sciences.

[36]  W. Gerald,et al.  The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer. , 2008, Cancer research.

[37]  Francesco Porpiglia,et al.  Human ASH1 expression in prostate cancer with neuroendocrine differentiation , 2008, Modern Pathology.

[38]  J. Epstein,et al.  Small Cell Carcinoma of the Prostate: A Morphologic and Immunohistochemical Study of 95 Cases , 2008, The American journal of surgical pathology.

[39]  M. Teitell,et al.  Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. , 2007, Cancer cell.

[40]  K. Do,et al.  Treatment outcomes of small cell carcinoma of the prostate , 2007, Cancer.

[41]  Dean W. Felsher,et al.  Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation , 2007, Proceedings of the National Academy of Sciences.

[42]  R. Jove,et al.  Expression and role of Foxa proteins in prostate cancer , 2006, The Prostate.

[43]  Ximing J. Yang,et al.  Small Cell Carcinoma of the Prostate: An Immunohistochemical Study , 2006, The American journal of surgical pathology.

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[46]  Kenneth Chu,et al.  Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of MYC , 2002, Science.

[47]  J. Köllermann,et al.  Neuroendocrine Differentiation in Prostatic Carcinomas: Histogenesis, Biology, Clinical Relevance, and Future Therapeutical Perspectives , 1999, Urologia Internationalis.

[48]  K. Sirotkin,et al.  dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. , 1999, Genome research.

[49]  C. Sawyers,et al.  The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. A. Hamilton,et al.  Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. , 1998, British Journal of Cancer.

[51]  C. Olsson,et al.  Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. , 1997, Urologic oncology.

[52]  D. Bostwick,et al.  Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. , 1997, Cancer research.

[53]  Gail Mandel,et al.  REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons , 1995, Cell.

[54]  C. Dinney,et al.  Metastatic model for human prostate cancer using orthotopic implantation in nude mice. , 1992, Journal of the National Cancer Institute.

[55]  R. Matusik,et al.  Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. , 1986, Cancer research.

[56]  J. Minna,et al.  Selective growth in serum-free hormone-supplemented medium of tumor cells obtained by biopsy from patients with small cell carcinoma of the lung. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Robinson,et al.  Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. , 2016, Cancer cell.

[58]  M. Rubin,et al.  Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. , 2013, Neoplasia.

[59]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[60]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[61]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.