A genome-wide metabolomic resource for tomato fruit from Solanum pennellii

[1]  Alisdair R Fernie,et al.  The spatial organization of metabolism within the plant cell. , 2013, Annual Review of Plant Biology.

[2]  Richard G. F. Visser,et al.  Marker2sequence, mine your QTL regions for candidate genes , 2012, Bioinform..

[3]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[4]  Je-Gun Joung,et al.  Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. , 2012, The Plant journal : for cell and molecular biology.

[5]  Wilhelm Gruissem,et al.  Structure and dynamics of the isoprenoid pathway network. , 2012, Molecular plant.

[6]  J. Fisahn,et al.  Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development1[W][OA] , 2011, Plant Physiology.

[7]  Nathaniel D Hawkins,et al.  Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow , 2011, Proceedings of the National Academy of Sciences.

[8]  F. Carrari,et al.  Genetic dissection of vitamin E biosynthesis in tomato , 2011, Journal of experimental botany.

[9]  R. McQuinn,et al.  Integrative Transcript and Metabolite Analysis of Nutritionally Enhanced DE-ETIOLATED1 Downregulated Tomato Fruit[W] , 2010, Plant Cell.

[10]  F. Carrari,et al.  Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii1[W][OA] , 2010, Plant Physiology.

[11]  F. Cellini,et al.  A new mutant genetic resource for tomato crop improvement by TILLING technology , 2010, BMC Research Notes.

[12]  A. Fett-Neto,et al.  Plant secondary metabolism and challenges in modifying its operation: an overview. , 2010, Methods in molecular biology.

[13]  K. Ohyama,et al.  Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. , 2009, Journal of experimental botany.

[14]  A. Fernie,et al.  Metabolomics-assisted breeding: a viable option for crop improvement? , 2009, Trends in genetics : TIG.

[15]  J. Selbig,et al.  Mode of Inheritance of Primary Metabolic Traits in Tomato[W][OA] , 2008, The Plant Cell Online.

[16]  Z. Lippman,et al.  An integrated view of quantitative trait variation using tomato interspecific introgression lines. , 2007, Current opinion in genetics & development.

[17]  P. Fraser,et al.  Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism[W] , 2007, The Plant Cell Online.

[18]  M. Kuntz,et al.  Dual Role of the Plastid Terminal Oxidase in Tomato , 2007, Plant Physiology.

[19]  Yuling Bai,et al.  Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? , 2007, Annals of botany.

[20]  John M Baker,et al.  Recent applications of NMR spectroscopy in plant metabolomics , 2007, The FEBS journal.

[21]  M. Causse,et al.  Major Proteome Variations Associated with Cherry Tomato Pericarp Development and Ripening[OA] , 2007, Plant Physiology.

[22]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[23]  Alisdair R Fernie,et al.  Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  U. Roessner,et al.  Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement , 2006, Nature Biotechnology.

[25]  A. Fernie,et al.  Natural genetic variation for improving crop quality. , 2006, Current opinion in plant biology.

[26]  A. Rahier,et al.  Biogenesis, molecular regulation and function of plant isoprenoids. , 2005, Progress in lipid research.

[27]  C. Rice-Evans,et al.  The genotypic variation of the antioxidant potential of different tomato varieties , 2005, Free radical research.

[28]  P. Fraser,et al.  Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. , 2004, Plant biotechnology journal.

[29]  D. Zamir,et al.  Introgressions fromLycopersicon pennellii can improve the soluble-solids yield of tomato hybrids , 1994, Theoretical and Applied Genetics.

[30]  F. Carrari,et al.  Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions , 2004, Science.

[31]  P. Fraser,et al.  The biosynthesis and nutritional uses of carotenoids. , 2004, Progress in lipid research.

[32]  S. Tanksley,et al.  RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon , 1990, Theoretical and Applied Genetics.

[33]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Fürholz,et al.  Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Zamir,et al.  There is more to tomato fruit colour than candidate carotenoid genes. , 2003, Plant biotechnology journal.

[36]  A. Frary,et al.  Comparative Genetics of Crop Plant Domestication and Evolution , 2003 .

[37]  Robert Tibshirani,et al.  Statistical Significance for Genome-Wide Experiments , 2003 .

[38]  N. Misawa,et al.  Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Zamir Improving plant breeding with exotic genetic libraries , 2001, Nature Reviews Genetics.

[40]  H. Ohta,et al.  Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco , 2001, FEBS letters.

[41]  J. Giovannoni,et al.  MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING. , 2001, Annual review of plant physiology and plant molecular biology.

[42]  D. DellaPenna,et al.  Elevating the vitamin E content of plants through metabolic engineering. , 1998, Science.

[43]  S. Borchert,et al.  Enzymic properties and capacities of developing tomato (Lycopersicon esculentum L.) fruit plastids , 1998 .

[44]  N. Misawa,et al.  Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids , 1997, Applied Microbiology and Biotechnology.

[45]  N. Misawa,et al.  Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. , 1997, The Biochemical journal.